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ABSTRACT 
The ability to determine what day-to-day activity (such as 
cooking pasta, taking a pill, or watching a video) a person is 
performing is of interest in many application domains. A system 
that can do this requires models of the activities of interest, but 
model construction does not scale well: humans must specify low-
level details, such as segmentation and feature selection of sensor 
data, and high-level structure, such as spatio-temporal relations 
between states of the model, for each and every activity.  As a 
result, previous practical activity recognition systems have been 
content to model a tiny fraction of the thousands of human 
activities that are potentially useful to detect. In this paper, we 
present an approach to sensing and modeling activities that scales 
to a much larger class of activities than before. We show how a 
new class of sensors, based on Radio Frequency Identification 
(RFID) tags, can directly yield semantic terms that describe the 
state of the physical world. These sensors allow us to formulate 
activity models by translating labeled activities, such as “cooking 
pasta”, into probabilistic collections of object terms, such as 
“pot”. Given this view of activity models as text translations, we 
show how to mine definitions of activities in an unsupervised 
manner from the web. We have used our technique to mine 
definitions for over 20,000 activities. We experimentally validate 
our approach using data gathered from actual human activity as 
well as simulated data.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – knowledge acquisition.  
I.2.7 [Artificial Intelligence]: Natural Language Processing – text 
analysis.  

General Terms 
Algorithms, Performance, Design. 

Keywords 
Activity inference, activity models, RFID, web mining. 

1. INTRODUCTION 
Systems that recognize human activities have long been regarded 
as enabling a variety of useful applications. Proposed applications 
include activity-based actuation (e.g. dimming lights when a 
video is being watched), to prompting (e.g. providing directions 
for someone using unfamiliar facilities and appliances), and 

notification (e.g. informing caregivers when an elderly person 
fails to perform key activities of daily living). Unfortunately, such 
applications have been slow in materializing, even as research 
prototypes. A key reason is that the process of developing these 
applications is not scalable. In particular, developing recognizers 
for even small classes of activities is a highly specialized activity 
involving months to years of work by specialists in pattern 
recognition.  The resulting systems are typically only applicable 
to certain applications and deployment contexts. The cost of 
developing recognition infrastructure is thus both too high for the 
ordinary developer and not amortizable across applications, or 
even over multiple deployments of the same application. Many 
researchers have therefore recognized the value of developing a 
general system that recognizes a large and useful class of 
activities with minimal incremental effort from programmers or 
end users.  
A broadly applicable and easy-to-use system must overcome at 
least two major challenges. First, the system should be general-
purpose: it should not, by its very design, be incapable of 
recognizing new activities of interest. Design decisions that limit 
a system’s generality include the sensors used, the features 
derived from the sensors, the relationships between these features 
that comprise activities modeled in the system, and the algorithms 
used for matching observations to models. Second, the system 
must facilitate model extraction: even if the system can in 
principle recognize complex activities once models for these 
activities are specified, specifying robust, widely-applicable 
models can itself be a considerable burden even for experts. At its 
heart, the model of an activity is a human belief. A good model 
extraction scheme needs to tap into these beliefs with minimum 
interaction with humans, a seemingly paradoxical task.  
The common approach to facilitating model extraction is to 
support learning of the models from sensor data. In some cases 
[1][11][13] the developers define the structure of the possible 
models, but the system tunes the parameters of the model based 
on examples from the user. In others [2][4][14] the system uses 
pattern recognition techniques to recognize spatio-temporal 
patterns that may constitute “interesting” activities in an 
unsupervised manner. However, the user is then expected to label 
these patterns. Unfortunately the burden of supervising (whether 
providing examples or perusing patterns to determine appropriate 
labels) still makes model extraction onerous in both cases. 
Further, the variety of activities whose models can be extracted is 
quite restricted: by the scenarios anticipated (and formalized) by 
the developers in the former case, and by the built-in pattern 
recognizers in the latter. 
In this paper, we present a technique for extracting models of 
human activity that finesses the problem of directly involving 
humans in order to learn about their beliefs. In the tradition of 
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much recent work on exploiting the web as a repository of human 
beliefs, we show how to mine very large libraries of human 
activities from the web, instead of analyzing sensor data. In 
particular, we use step-by-step human descriptions of activities 
(such as recipes and how-tos) from appropriate websites to obtain 
the structure of our models, and supplement these with web-wide 
measures of similarity between concepts and terms to obtain the 
parameter values for our models. The technique is feasible with 
very lightweight natural language tools and has enabled our 
system to mine a library of models for roughly twenty thousand 
mundane activities, covering many aspects of human life.  
At the heart of our technique is a breakthrough in sensing 
technology. Advances in miniaturization and manufacturing have 
yielded postage-stamp sized, forty-cent radio transceivers called 
Radio Frequency Identification (RFID) tags that can be attached 
unobtrusively to objects as small as a toothbrush. The tags are 
wireless and battery free. When queried by radio, the tag responds 
with a globally unique identifier using power scavenged from the 
querying signal. When combined with special wearable and 
ambient tag readers and a database mapping identifiers to names, 
RFID technology can reliably name the objects with which a 
person is interacting. Because of the sensors’ accuracy and 
specificity we model activities in a novel way: we define an 
activity in terms of the probability and sequence of the objects 
that are physically involved in the activity.  We are thus able to 
view models as probabilistic translations from terms that represent 
an activity name (such as “drinking tea”) to terms that represent 
the objects involved (such as “teacup” and “teabag”).  
To show that the resulting models (and the recognition system as 
a whole) can be used for detecting actual activities, we present the 
results of analyzing activities of daily living (ADLs) data from 
eight subjects in a real home. ADLs are regarded as indicators of 
patient wellness, and professional caregivers are often required by 
law to record them. Our users performed subsets of fourteen 
classes of activities comprising 66 activities in all.  To explore the 
usefulness of the remaining thousands of models, and to evaluate 
the components of our model extractor more thoroughly, we also 
present results based on simulated traces and cross-corpus 
comparisons. 
In this paper, we make three main contributions: 
1. We formulate the problem of extracting activity models as 

that of generating translations between natural language 
terms. 

2. We describe a simple set of techniques to mine these 
translations automatically from the web. 

3. We validate these techniques via a combination of real-world 
experiments and simulations. 

To the best of our knowledge, this paper is the first to show how 
to mine useful models of human physical activity from the web.  
The system for mining models is part of a larger activity 
recognition system called the Proactive Activity Toolkit 
(PROACT)[15]. To place the model extractor in context, section 2 
sketches the structure and usage model for PROACT. Section 3 
describes in detail how we mine models. Section 4 evaluates the 
model extractor. Section 5 presents related work. Section 6 
summarizes the paper and presents future work.   
 

2. ACTIVITY INFERENCING SYSTEM 
Below, we describe how the PROACT activity recognition 
system, which uses the mined models, is intended to be used.  We 
then describe the high-level structure of PROACT, place the 
model miner in context.  

2.1 Usage model 
PROACT assumes that “interesting” objects in the environment 
contain RFID tags. These can be purchased off the shelf, cost 
roughly $0.40 each, have the form factor of postage stamps 
(including adhesive backing), and can withstand day-to-day use 
for years. PROACT deployment involves tagging tens to 
hundreds of objects in their environment. This can be done 
incrementally.  As the number of tags increase more accurate and 
detailed recognition becomes possible. Tagging an object 
involves sticking an RFID tag on it, and making a database entry 
mapping the tag ID to a name.  Current trends indicate that within 
a few years, many household objects may be RFID-tagged before 
purchase, thus eliminating the overhead of tagging.  
Users employ RFID tag readers to track tag objects they interact 
with. They may wear tag-detecting bracelets or gloves, place 
medium-range readers in corners of rooms, or run robots, vacuum 
cleaners, or janitorial carts, with mounted long-range readers. As 
users go about their daily activities, the readers detect tags that (a) 
users touch, (b) are close to them, or (c) are moved by them, and 
thereby deduce which objects are currently involved in an 
activity. PROACT uses the sequence and timing of object 
involvement to deduce what activity is happening.  
An application can query PROACT at any time for the likelihood 
of various activities being tracked or details of those activities 
(e.g. objects involved or durations), or subscribe for event 
notification when activities occur with a specified degree of 
certainty. Programmers name activities using plain English 
phrases (e.g. “paying bills”). The phrase used can either be chosen 
from a pre-mined list provided by PROACT, or can be a new one 
provided by the programmer. For a new phrase, the programmer 
can define the activity by providing a text document containing an 
English description of the steps involved in the activity (much 
like a recipe). The model extractor converts text into activity 
definitions. 

2.2 System Overview 
Figure 1 presents the main components of PROACT. It is 
centered on an inference engine which, given models for 
activities, and sequences of sensor readings, returns the likelihood 
of current activities. The models are produced by the model 
extractor, which extracts them automatically from text documents, 
including but not limited to websites.  The sensor readings are 
produced while the end-user performs activities. For debugging, 
PROACT provides an activity viewer, which provides 
programmers with a real-time view of activities in progress, the 
sensor data seen, and an indication of how belief in each activity 
changes with the data.  A more detailed description of the system 
is in [15]. We elaborate on some of the relevant components 
below. 
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2.2.1 Sensors 
PROACT depends on being able to observe objects that are 
“involved” in activities. As mentioned previously, we detect 
objects by detecting RFID tags stuck to the objects. The left-hand 
image in Figure 2 shows three types of off-the-shelf tags that may 
be used for this purpose. The first two have a 3-5 cm range, the 
third 2-6 meters. 

  
Currently, we use two different kinds of RFID readers to detect 
two types of involvement. First, we use long-range readers 
mounted on a mobile robot platform to map the location of 
objects in the activity space. Coupled with the location of the 
user, this information gives the set of objects close to a person at a 
given time. Second, we use a short-range reader built into the 
palm of a glove that can determine the objects that are touched. 
The glove-based reader is on the right of Figure 2. 

2.2.2 Models 
We now describe our model of activities. As an example, Figure 3 
shows how the activity of making tea is modeled. We model 
activities as a Dynamic Bayes Net representation of a Hidden 
Semi-markov Model.  Each model is composed of a sequence 
s1,…,sn of steps in the activity. If a step follows another in the 
sequence, then the latter must temporally follow the former in any 
valid instance of the activity. The example shows three steps for 
making tea, each drawn as a circle, corresponding to (A) boiling 
water, (B) steeping, and (C) flavoring the tea. Each step si has:  

• An optional duration ti, modeled as a Gaussian 
probability distribution (µi,σi).  In this example, 
steeping the tea is expected to take 2 minutes.  The 
amount of time required to boil the water and flavor the 
tea is unknown, and does not influence the reasoning. 

• The set {(oi1, pi1),…,(oiNi, piNi)} of Ni objects oij involved, 
along with the probability pij of involvement of those 
objects. In Figure 3, for instance, we expect to see a 
teapot 70% of the time that we are boiling water, 

whereas sugar is involved in the flavoring phase 40% of 
the time. 

 

 
Our model is based on a particle filter implementation of  
Bayesian reasoning. Equation 1 shows the Bayesian update 
equation which provides the mathematical interpretation to Figure 
3.  In this equation the probability of being in a given state, xt, 
given the sequence of observations, z1...zt, is related to three 
quantities: a sensor model, a state transition model and a prior 
distribution.  The sensor model accounts for sensor error, and the 
expectation of seeing a given RFID when engaged in an activity.  
The state transition model accommodates the graphical structure 
that links the nodes in the activities, the timing constraints on the 
nodes and the probabilistic requirement of seeing certain RFID's 
before an activity can be considered complete. Finally, the prior 
distribution accounts for the state of the world before any sensors 
are seen as well as a recursive description of the state of the world 
at the previous time step. 
 

Equation 1: The Bayesian update equation 
 
Our model of activities is quite simple. Possible variations on the 
basic theme include modeling activities using trees or graphs 
instead of linear lists; requiring timing information for each step; 
modeling sources of error, such as sensor error and model error 
separately; and modeling more complex belief structure at each 
step. However, we have deliberately chosen to keep our models 
simple, because they are easier to mine and faster to reason with. 
A key result of this paper is that even these simple models are 
quite effective, while supporting automated extraction and real-
time tracking. 

2.2.3 Inference Engine 
The inference engine converts the activity models produced by 
the mining engine into Dynamic Bayesian Networks. We use a 
Sequential Monte Carlo (SMC) approximation to probabilistically 
solve for the most likely activities.  The inference engine is 
adapted from that used in related work on transportation behavior 
inference [14].  

3. THE MODEL EXTRACTOR 
The model extractor builds formal models of activities (of the 
kind specified in section 2.2.2), given definitions for activities 
written in natural language by humans. Such definitions (which 

Figure 2: RFID Tags (L) and Glove-Based Reader (R) 

5cm

Figure 1: A High-Level View of PROACT 

Figure 3: PROACT Model for Making Tea 
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we will generically call “directions” below) include how-tos (e.g. 
those at ehow.com), recipes (e.g. from epicurious.com), training 
manuals, experimental protocols, and facility/device use manuals. 
For example, Figure 4 shows directions for making tea. 

 
3.1 Syntactic structure of directions 
A key observation in enabling this translation is that, in many 
cases, the structure of natural language directions closely parallels 
the structure of our formal model. Typically, each direction 
consists of: 
1. A title t for the activity, and 
2. A textual list r1,…,rm of steps. Each step ri has: 

• Possibly a special keyword delimiting duration di, and 

• A natural-language description nldi, typically a 
paragraph, of what to do during the step, typically 
mentioning some subset of the objects involved in the 
step, and often also constraints on the duration of the 
step. 

The example of Figure 4 has title t = “Making Tea”, number of 
steps m = 3, no formally stated duration for each step, a two-
minute minimum constraint on the duration of step 2. The objects 
mentioned in each step are highlighted in bold font.  
In practice, each corpus of directions we wish to mine has its own 
concrete syntax (keywords, numbering scheme, indentation, etc), 
which needs to be parsed into the above abstract syntax. For each 
corpus, therefore, we require a user to provide a front-end that 
performs this parsing. 

3.2 Converting directions to activity models 
The similarity of structure between the formal models and the 
directions suggests the following scheme for converting the latter 
into the former. Intuitively, we produce one step in the model for 
each step in the directions; the objects mentioned in the paragraph 
for the step are those involved with the step in the model. We 
name key steps in bold, and provide acronyms for them when we 
need to use them in the future. 
1. Labeling. Set label l of the mined model to title t of the 

directions. 
2. Parsing Steps. For each step ri  in list r1,…,rm generate step 

si  as follows: 
a. If ri has keyword-delimited duration di, set the mean 

duration µi for the step to di, and standard deviation σi 
to S(di, i, l). 

b. Let Oi=O(nldi) be the set of terms that represents 
objects in the descriptive paragraph nldi. For each term 
oij in Oi, calculate the probability P(oij, i, l) that an 
object named oij  is touched in step i of activity l.  

3. Tagged Object Filtering. Given the set Odeployed of tagged 
named objects in the space where the activity is happening, 
we remove from our model all observations related to objects 
not in Odeployed. This step exploits the fact that in most actual 
deployments of the system, the set of objects the system can 
possibly see is often much smaller than the set of objects 
named in the models. 

The scheme depends on three helper functions:  

• Function S(d, i, l) computes the standard deviation for the 
duration of step i of activity l (which has mean duration d).  
A very simple definition is S(d, i, l) = N seconds, where N is 
an integer fixed for each corpus being mined. 

• Function O(nld) computes the set of terms representing 
objects in paragraph nld. This happens as follows: 

a. Object Extraction. Compute the set T of terms in nld 
that represent objects, as per an ontology over the terms. 
We currently use the WordNet [18] ontology, and 
include all terms that have either “object” or 
“substance” as hypernyms.  

b. Noun-Phrase Extraction. Compute the subset of terms 
in T that are used as nouns in the original paragraph, 
nld. We currently use the QTag tagger [10] on the 
incoming paragraph for part-of-speech tagging. We run 
the tagged paragraph through a customized regular-
expression based noun-phrase extractor, which extracts 
the set of maximal phrases that contains only nouns. 

• Function P(o, i, l) computes the probability that object oi  is 
involved in step i of the activity labeled l. We consider two 
alternative approximations for P, neither of which makes an 
effort to distinguish between two different steps of a model 
i.e. they ignore parameter i of function P. 

a. Fixed Probabilities. P(o, i, l) = Pobj. where 0<Pobj<1 is 
fixed for each corpus being mined. In our experiments 
below we use Pobj  = 0.5. 

b. Google Conditional Probabilities (GCP). P(o, i, l) = 
GoogleCount(“l”+o)/GoogleCount(l). GoogleCount(s) 
is the number of pages on the web matching string s as 
reported by Google [6], and s+s’ is the concatenation of 
string s and s’. For example, if the phrase “making tea” 
has 24,200 matches, and the phrase “making tea” cup 
has 7,340 matches, we conclude that the conditional 
probability of a cup being involved in (any step of) 
making tea is 7340/24,200 = 0.3.  

object→ 

↓activity 

Cup Diaper remote 
control 

Stapler keyboard wrench 

making 
tea 

0.30 0.01 0.01 0.00 0.03 0.01 

changing 
baby 

0.09 0.14 0.08 0.00 0.07 0.00 

watching 
television  

0.07 0.01 0.06 0.00 0.02 0.00 

copying 
paper 

0.03 0.01 0.01 0.01 0.05 0.00 

sending e-
mail 

0.01 0.00 0.01 0.00 0.04 0.00 

auto repair 0.09 0.06 0.02 0.00 0.04 0.05 

Table 1: GCP for some common activities and objects 

Figure 4: Directions for Making Tea 

Making Tea: 

1. Fill a teapot from the faucet. Place kettle on the stove and 
boil. 

2. Pour hot water into a cup, filling ¾ of the cup. Immerse 
teabag in cup for two minutes and dispose of teabag.  

3. Add milk and sugar to taste. 
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The GCP is predicated on what we call the mirror assumption: the 
probability of an object being involved in an activity in the real 
world is reflected by the probability of the phrases describing the 
two co-occurring in human discourse (and therefore on the web). 
It practice, since we interpret the results of our inference engines 
as likelihoods rather than probabilities, it is sufficient for our 
purposes that the probabilities are consistent; if the actual 
probability of involvement of one object-activity pair is lower 
than that of the other, the GCP of the one should be lower than 
that of the other.  
Table 1 presents the GCPs for six activities and six objects. We 
pick the objects such that the i’th object is intuitively one that 
would be involved in activity i, but not in any other. The i’th row 
and i’th column of the table contains the GCP of the i’th object 
being involved in the j’th activity. 
 In most cases, as expected, the table has its highest values along 
the diagonal. Pairings that intuitively seem unlikely (such as 
“diaper” and “making tea”) have substantially lower value than 
more plausible ones (e.g. “cup” and “making tea”). Although the 
relative values of the probabilities are on the whole sensible, the 
absolute values are lower than one might expect in most cases. 
For instance one expects to use a keyboard more than 4% of the 
time when sending e-mail! It is therefore important that any 
scheme that uses GCP require at most consistency, but not 
absolute accuracy, of probabilities. 

3.3 Example 
To show how the model extractor works, we apply the model-
mining steps of the previous subsection to the directions for 
making tea:  

1. [Labeling] As per step 1, the label for the new activity is 
“Making Tea”. 

2. [Parsing Steps] As per step 2, the new activity has m = 3 
steps.  
a. Since none of the steps in the figure have a keyword-

delineated duration, we do not ascribe durations to any 
of the steps. 

b. Figure 5 shows the result of applying the helper 
functions to each of the paragraphs 1, 2 and 3 of the 
incoming directions.  
i. Sets T1 through T3 show terms describing objects, as 

extracted by the OT pass for each of the three 
paragraphs. Note that the terms include “filling”, 
which though a hyponym of “substance” in 
WordNet, is as a verb here. 

ii. Sets O1 through O3 are the subsets of T1 through T3, 
as produced by the POST pass that are used as 
nouns in the directions. Since “filling” is used as a 
verb, it is eliminated here.  

iii. Sets s1 through s3 are the result of adding to each 
object the probability that it is involved in the 
activity as a whole, using GCP to get probabilities.  

Note that this resulting model has structure very similar to 
that of the model in Figure 3, except that the probabilities 
are different and that the new model has no timing 
constraints.  

3. [Tagged Object Filtering] Finally, suppose that we use the 
model to track activities in a space where the set Odeployed of 

names used for tagged objects is {kettle, stove, cup, teabag, 
milk}. Sets t1 through t3 result from removing from sets s1 
through s3 objects that are not in this set.  

 

4. EVALUATION 
We have used the techniques described in the previous section to 
mine roughly 21,300 models from two websites that provide 
directions for activities. We mined ehow.com for roughly 2300 
directions on performing domestic tasks (from “boiling water in 
the microwave” to “change your air filter”), and ffts.com and 
epicurious.com for a further 400 and 18,600 recipes respectively. 
In the rest of this section, we evaluate these models. None of the 
models we mined for this set of experiments have keyword-
delimited timing constraints; we have used a default of five 
seconds per activity step. 
We are interested in answering two main questions through our 
evaluation: 

1. Are the models good enough? We wish to evaluate whether 
the models we mined contain sufficient information to enable 
correct recognition of object traces gathered from actual 
humans performing activities. The subjects may, of course, 
perform the activities in a wide variety of ways, most of 
which will hopefully be captured by the model. 

2. How effective are the various steps that comprise the 
model extractor? We wish to evaluate the impact of the 
various steps (and of alternate design options) of the mining 
scheme.  

We assume for the evaluation that the inference engine is fixed to 
be the Monte-Carlo based solver sketched in section 2.2.3. 
A comprehensive but impractical strategy to determine 
sufficiency and necessity would be to collect, from real-world 
activities, traces that exercise all models we have mined. These 
traces would represent the large variety of ways in which people 
perform activities. By comparing to ground truth the results 
reported by the inference engine on these traces, we could 

After Object Extraction: 
T1: {kettle, faucet, stove} 
T2: {water, cup, filling, teabag}  
T3: {milk, sugar} 

After Noun Phrase Extraction: 
O1: {kettle, faucet, stove} 
O2: {water, cup, teabag}  
O3: {milk, sugar} 

After Google Conditional Probabilities: 
s1: {(kettle, 0.11), (faucet, 0.01), (stove, 0.08)} 
s2: {(water, 0.50), (cup, 0.30), (teabag, 0.01)}  
s3: {(milk, 0.16), (sugar, 0.16)} 

After Tagged Object Filtering:  
Odeployed = {kettle, stove, cup, teabag, milk} 

t1: {(kettle, 0.11) , (stove, 0.08)} 
t2: {(cup, 0.30), (teabag, 0.01)}  
t3: {(milk, 0.16)}

Figure 5: Steps in Mining the Directions for Making Tea 
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evaluate sufficiency of all the models. By comparing accuracy of 
results with various (combinations of) mining techniques turned 
off, we could evaluate the efficacy of those techniques. 
Unfortunately, it is impractical to collect actual usage data for 
thousands of activities. The activities are time consuming, often 
complex and sometimes unpleasant; getting subjects to perform 
all of them in various combinations is clearly an impractical task. 
Instead, we use the following three strategies to approximate 
comprehensive evaluation. The three options apply to 
increasingly larger classes of activities, but provide increasingly 
indirect evidence about the quality of our system: 

1. Human activity-trace recognition (HTR). We 
instrumented the home of one of the researchers with 108 
RFID tags. Over a period of six weeks, we collected traces 
(consisting of time-stamped RFID tag numbers) from 14 
subjects, while each performed a randomly chosen 12 of 14 
Activities of Daily Living (ADLs). Our subjects all wore the 
glove-based RFID reader (Figure 2) to allow tracking of 
touched objects. We picked our ADLs from state-mandated 
ADL lists. Each ADL (e.g. housework) corresponds to many 
ordinary activities (e.g. washing dishes, making beds, 
dusting, vacuuming). In all, our subjects picked from roughly 
50 activities of the latter kind. Subjects recorded activities as 
they performed them, to provide us with ground truth.  
To measure the quality of our models, we select 66 of the 
models mined from ehow.com.  These correspond to the fifty 
activities being performed by the user (some user activities 
are described by more than one model). We measure the 
accuracy with which our inference engine infers activities 
given these models. We define accuracy below. 

2. Inter-corpus consistency (ICC). In the absence of actual 
activity traces, we cannot measure the ability of our models 
to represent real activities directly. However, we can still 
indirectly measure the ability of our models to represent the 
diverse ways in which activities may be performed. 
Specifically, if an activity model mined from a particular 
corpus is to represent most instances of the corresponding 
activity, it must, in particular be compatible with another 
representation of the same activity (since the latter 
description presumably represents some person’s way of 
performing the activity).  
Based on the above insight, we use two different corpora 
(epicurious.com and ffts.com) containing the same activities 
to test the quality of our models. Each corpus contains 
roughly 120 recipes for making cookies. We first generate 
models for all activities in the two corpora. Next, for each 
model derived from one corpus, we generate traces 
compatible with model: for each state in the model, in order, 
we include in the trace a subset of the objects corresponding 
to that state. Each object is picked with probability equal to 
its conditional probability pij. We measure the accuracy with 
which we infer activities on these traces given the models 
generated from the second corpus. 

3. Intra-corpus distinguishability (ICD). Unfortunately, even 
inter-corpus comparisons are difficult to perform extensively 
due to lack of data. Most activities in ehow.com, for 
instance, are not easily available from other sources. We 
therefore adopt a third strategy. Once again, we resort to an 
indirect technique for measuring if the mined models are 
sufficient for recognizing traces from real activities. We 

observe that if the models are good enough to recognize their 
corresponding activities, then in particular each model 
should have a stronger match than any of the other models 
on activities that conform perfectly to it. In other words, the 
models must contain enough information to distinguish 
themselves from each other. 
To keep the number of activities inferred simultaneously 
manageable, we restrict ourselves to testing 
distinguishability between models from the same activity 
domain. To this end, we select seven domains (ADLs, 
automobiles, food, grooming, parties and the two cookie 
datasets described above). As a measure of 
distinguishability, we measure the accuracy with which 
traces generated from models in a given domain are detected, 
given the set of all models in the domain. Since the traces 
generated are “perfect” with respect to the model being 
matched against, the distinguishability metric is in a sense a 
“limit” on how well the models can do given our inference 
engine. 

The three strategies above rely on measuring the accuracy with 
which activity traces can be detected. To determine accuracy over 
a trace, we split the trace into five-second windows. Accuracy 
then refers to the fraction of windows where our inference engine 
gives the same result as ground truth. 
In the following subsections, we present the limit measurements 
from our ICD study, followed by the more direct quality measures 
from the HTR and ICC measurements. Next, we analyze the 
contribution of the component techniques of the model extractor 
towards accuracy. Finally, we measure the effect of some of these 
techniques in producing more compact models. 

4.1 Intra-Corpus Distinguishability 
Figure 6 shows the distinguishability for each of the seven 
domains mentioned above. The distinguishability of a domain is 
the accuracy across the result of concatenating all traces for that 
domain i.e. the fraction of all 5-second windows across all 
activities in the domain that we labeled correctly. The numbers 
range from 67% for autos to 95% for the second cookie domain. 
The implication is that if the sensor trace from an activity 
conforms closely to that expected by the model for that activity, 
the models we mined for the domains are distinct enough, and our 
activity inference engine sensitive enough, that we can correctly 
identify the activity much of the time.  
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Figure 6: Distinguishability Within Activity Domains 
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4.2 Human and inter-corpus trace recognition 
Figure 7 presents the accuracy achieved on the HTR 
measurements (testing against measured human traces, labeled 
ADLs), and the ICC measurements (testing inter-corpus 
consistency, labeled Cookie-1 and Cookie-2).  
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The bar labeled “ADLs” represents the accuracy across the 
unified trace that results from concatenating the traces from all 14 
subjects across all 12 activities that they performed. It therefore 
says that for 50% of all 5-second timeslots, we are able to 
correctly infer the ongoing activity. Although the number may 
seem modest, we point out for comparison that a random 
assignment of activities to slots, given that there are 66 possible 
activities being modeled, will yield only 1.5% accuracy. We also 
note that we are unaware of any previous work that recognizes 
such a large variety of activities being performed by such a large 
number of subjects in an unmodified home (even with 
handcrafted activity models) with at least this level of accuracy. 
The fact that recognition rates for ADLs on real traces is 
significantly lower than the distinguishability implies that the 
traces seen in practice deviate from models. There are two main 
reasons for this deviation. First, the traces violate some of the 
assumptions underlying our models. For instance, many objects 
touched and were not tagged, tagged objects were sometimes 
missed, and objects from different activities were interleaved. 
Second, the models were not fully general representations of the 
corresponding activities. For instance, they imposed extraneous 
ordering constraints, omitted possible objects or included optional 
objects. 
The bar labeled Cookie-1 represents the accuracy of Cookie-1 
models across the unified trace that results from concatenating the 
individual traces generated from the models of Cookie-2, and vice 
versa for the bar labeled Cookie-2. As explained previously, these 
bars address the question of how generally valid the models 
mined from each of these corpora are. In comparison with the 
95% distinguishability rates, the accuracy is roughly 40% in both 
cases. There are two reasons for this discrepancy. One, of course, 
is that the identical recipe can have quite different structure in the 
two corpora. The other is that for some of the recipes, there is no 
(unique) counterpart in the other corpus. Our results may have 
improved had we removed these. 

4.3 Impact of techniques on accuracy 
We wish to measure the relative impact of our various techniques 
on recognition accuracy. Accordingly, we use the full system, 

with all techniques in use, as a baseline and remove parts of the 
system one at a time. Figure 8(a) and (b) present the efficacy of 
the various techniques that comprise our model extractor on the 
ADLs and the two cookie datasets respectively. In each chart, the 
bar labeled “All” uses all available techniques. The other bars 
represent our models generated without Google probabilities 
(using a fixed probability of 0.5 for all objects), without 
performing tagged object filtering, and without performing part-
of-speech tagging and noun phrase extraction, respectively. The 
error bars show a 95% confidence interval around the results. 
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The markedly different shapes of the two charts make clear that 
the domains of ADLs and Cookies are quite different. In the ADL 
domain, using Google probabilities actually seems to hurt 
accuracy. We therefore made an additional comparison between 
using none of our techniques and using only Google probabilities. 
This comparison is shown in Figure 9, with the “All techniques” 
accuracy for comparison. Clearly, Google probabilities alone do 
have a positive effect. We believe that these various techniques 
interact, so that doing them all together does not necessarily help. 
The Google probabilities provide some information, but, as we 
saw in Error! Reference source not found., the probabilities are 
noisy; once we have done part-of-speech tagging and object 
filtering, Google probabilities provide no additional information, 
but the inherent noise hurts overall accuracy. This provides strong 
motivation for future work in improving these probabilities. 
In comparison to the ADL domain, the Cookie domain involves 
many more activities and many more objects, and our best 

Figure 7: Accuracy of Recognition for Three Datasets 

Figure 8(a): Impact of Selectively Disabling Mining 
Techniques with ADL Dataset

Figure 8(b): Impact of Selectively Disabling Mining 
Techniques with Cookies Dataset 

579



performance is significantly worse. In this domain, each 
technique contributes some additional information, without as 
much apparent interaction. As a result, we see the highest 
accuracy when using all techniques. These differences between 
the ADL and Cookie domains suggest that choosing the best 
technique for a particular problem domain may depend highly on  
the structure of that domain.  
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Figure 9: Impact of Google probabilities with ADL Dataset 

4.4 Impact of techniques on compactness 
The various techniques we apply in the extractor have significant 
impact on the resulting models. Figure 10 shows how the average 
number of objects per activity varies as we apply part-of-speech 
tagging and tagged object filtering to models in the ADL and 
Cookie domains. As discussed in Section 4.3, these two domains 
differ significantly in their structure. ADL activity models are 
only somewhat reduced when we filter for noun phrases, but 
drastically reduced by tagged object filtering. The resulting 
models are significantly smaller. In fact, approximately 30% of 
activity steps become empty; when we remove these empty 
nodes, we change the structure of the resulting activities. On the 
other hand, the Cookie activities are barely affected by tagged 
object filtering, but are significantly reduced by part-of-speech 
tagging. These models contain many more objects, and these 
techniques do not create any significant change in structure. 
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Figure 10: Impact of Mining Techniques on Model Size 

5. RELATED WORK 
To the best of our knowledge our work is the first to mine models 
of human physical activities directly from textual or web-based 

descriptions. Related work falls into two main categories, and we 
view our work as being complementary to both. 
In the past few years, much work has gone into extracting models 
of human beliefs (other than activities) such as shared interests 
[17], preferences [3], reputations [5], concept definitions [9] and 
spam [16] by mining virtual communities such as the web, chat 
rooms and newsgroups.  In many cases, these efforts have 
revolved around a mixture of techniques similar to those we use: 
lightweight natural language processing (NLP), document co-
occurrence analysis for detecting semantic proximity, mining 
topic and community-specific corpora. Even the notion of Google 
Conditional Probability (GCP) has in essence been used for 
extracting conditional probability of beliefs [7], although our 
application of Google to real-world phenomena (via the mirror 
assumption) is novel. These projects also employ a variety of 
techniques (such as link-structure analysis and more advanced 
NLP techniques) that could profitably be used in our system. In 
some cases, the mined models are even used by virtual sensors to 
recognize new data; for instance, spam classification software 
uses mined models to classify incoming data. None of this work, 
however, makes the connection between mining models from data 
and recognizing activities in the physical world. 
An extensive literature exists on activity recognition, most of it 
using computer vision. In most cases [1][11][12], the focus is on 
identifying features, model structure and mining algorithms that 
enable robust detection of small subsets of activities. The models 
used in these systems are constructed and labeled by hand. In 
some of these cases, the parameters of the model are learned on 
the fly, whereas the structure and labels are provided by clients of 
the system. Similarly, some systems [12] learn patterns of user 
behavior, essentially modeling their likely future actions, but do 
not recognize or model activities per se. 
A smaller set [2][8] of systems learn quantitative models of 
classes of activities; they observe video footage depicting the 
movement of pre-defined robust features and extract probability 
density functions over possible sequences of feature 
configurations as “interesting” models. The models so extracted 
are sufficient for their intended purpose (e.g. enabling computers 
to mimic facial movements and gestures, and detecting periodic 
phenomena in footage of people’s lives). However, in order to use 
them as part of a library of activities, the extracted models still 
have to be labeled. Viewing the quantitative models and labeling 
them is a challenging task for humans.  
A final small class of systems [4] extracts models automatically 
from video, but provides qualitative descriptions of the footage. 
For instance, Fernyhough et al. are able to detect one car 
overtaking another in video footage and report the phenomena as 
a sequence of three operators: traveling behind-right in the same 
direction, traveling right in the same direction, and traveling 
infront-right in the same direction, rather than as a probabilistic 
graphical model over low-level features. The resulting description 
models are, of course, much easier for humans to parse and then 
label. However, it is conceivable that more models with more 
steps will get more difficult to comprehend or specify even in this 
qualitative fashion. Further, the system designer has to build in 
the primitives (such as infront-right) and the grammar to combine 
them. 
We view our techniques as being complementary to the ones 
discussed above. In particular, our models are suited to modeling 
activities that are characterized by the identity of objects 
involved. In many cases, however, activities are better 
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characterized by geometry, color and texture information; the 
above techniques are more suited for such activities.  

6. SUMMARY AND FUTURE WORK 
We show how the use of novel sensing technology (RFID tags) 
allows us to view human activity models as probabilistic 
translations from natural language phrases to words describing 
objects. Given this view of models, we provide a suite of 
techniques that allow conventional natural language descriptions 
of activities (such as how-tos and recipes) to be completely 
automatically converted into formal models of activities. We 
show, through a combination of measured data of human 
activities and simulations, that the models we generate are useful. 
We also provide an analysis of the contribution of our mining 
techniques to improving the accuracy and compactness of our 
models. Our techniques have allowed us to construct many orders 
of magnitude more models for human activities than described 
previously. 
This paper is essentially an introduction to the idea of mining 
activity detection from the web. We have identified an extensive 
research agenda that follows up on these ideas. 
Our first order of business for the future is to perform a more 
comprehensive evaluation of our models. We intend to collect 
human traces on many more activities, with many more tagged 
objects in the activity space (a few thousand as opposed to the 
current hundred or so), and on more challenging, but common, 
patterns of activity such as multi-person and interleaved activities. 
We would like to find corpora that provide alternate descriptions 
for many of our activities, both for performing inter-corpus 
consistency comparisons, and more importantly to examine 
techniques for combining multiple descriptions for a given 
activity. Finally, we have not yet attempted to mine timing 
constraints on activity steps on any large scale; we hope to locate 
corpora where timing constraints can be extracted easily and to 
test the usefulness of the timed models that result.  
We also plan to explore techniques for improving the 
effectiveness of our mined models. We are examining how to 
mine observables relevant to sensors other than RFID tags. In 
particular, we intend to include location in our models, extracting 
location information from textual descriptions. For example, the 
activity representing “baking cookies” might be annotated with 
the location “kitchen”. The location observables in the model are 
then triggered by location sensors as opposed to RFID sensors.  
Close examination of how we fail in recognizing certain activities 
has led us to believe that it will be profitable to model activities as 
partial orders, as opposed to lists. We are considering simple 
natural-language processing techniques to determine 
dependencies between two steps of a list of directions. In 
addition, human activities are often described in terms of each 
other, as when the recipe “basic pie crust” is given as a 
component of the recipe “apple pie”. We intend to augment our 
model of activities to allow references to other activities, and to 
then mine these references based on syntactic cues. We expect 
that, in many cases, clients of our system may be interested in 
activities for which no step-by-step description is known (e.g. 
“paying bills”). In these cases, we suspect that we can still create 
simple naïve-Bayesian models by simply identifying object 
names that are “semantically close” to the phrase describing 
activities. Our early forays in this direction have been quite 
promising.  

A difficulty in connecting mined activities with tagged objects is 
that the activity models may refer to objects synonymously. For 
example, we might have an object in our kitchen tagged “skillet” 
while our pancake recipe calls for a “frying pan”. One possible 
solution to the problem is to use synsets to represent objects. 
Synsets – collections of synonymous words – can be extracted 
from WordNet. Another solution would be to classify objects with 
an object ontology – again, an ontology can be constructed from 
WordNet – and recognize objects that are close in the ontology 
can sometimes be used interchangeably in activities. 
In this paper, we assumed that the spaces in which activities are 
performed have been extensively tagged with RFID tags. In 
practice, however, the person tagging the space may have only a 
limited number of tags available, and may value feedback on 
which objects are most profitable to tag, given the set of activities 
to be detected. We call this the “eigenobject” problem, and have 
preliminary ideas on solving it.  
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