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4.1 Introduction 
One of the major risks to independence for the elderly is the decline in the
accomplishment of typical activities of daily living (ADLs) due to mild
cognitive impairment (MCI), a precursor to Alzheimer’s disease. (In this
chapter, we use “ADL” to refer to basic ADLs [such as eating or dressing]
as well as to instrumental ADLs [such as cooking or housework].) Lawton1

measured the impact of impairment on instrumental ADLs and showed that
the time spent on activities such as housework, shopping, and recreation
declined 27 percent to 44 percent for impaired individuals. Furthermore,
regardless of the cause of cognitive disabilities, research suggests that one
of the best ways to prolong independence is to encourage the successful
completion of ADLs.2 A side benefit of such an improvement is an increase
in the quality of life of family caregivers. 

The term assisted cognition (AC)3 has been coined to describe systems
that use sensor data to determine the activities that a person is trying to
perform and optionally provide prompts, warnings, or other kinds
of interventions to help the person perform the activities safely and inde-
pendently. Research in AC combines ideas from sensor networks and
ubiquitous computing, artificial intelligence (AI), and human–computer
interaction (HCI). 

The number of sensors that can be used to track human activity, both
in the marketplace and deployed in the environment, is quickly growing.
They include familiar consumer-grade technologies like global positioning
systems (GPS), Wi-Fi, and radio frequency identification (RFID) tags, as well
as more specialized technologies such as MICA motes (small low-power
CPUs optimized for sensing). Research in AI, some of which is described in
this chapter, has developed methods for interpreting noisy sensor data in
terms of hierarchical models of subjects’ physical actions, activities, goals,
and cognitive states. Work on HCI has shown that people with cognitive
disabilities can effectively use interfaces that present simple choices and
instructions and that employ simple text and meaningful photographic
images.4,5,6
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AC has the potential to be useful for many types of assistance:

• Logging: Logs of ADL performance provide valuable data for health-
care professionals. Creating logs automatically would be more com-
prehensive and less expensive than relying on manual observations. 

• Rating and trending: A system that provides direct assistance to a
subject must be able to rate how well an activity is performed. Eval-
uating how performance changes over time, even in subtle ways,
provides information about cognitive decline.[7] 

• Guidance: Providing immediate feedback about the results of eval-
uation could help an individual successfully complete difficult ADLs.
Guidance strategies must be carefully designed to avoid increasing
the subject’s cognitive load and should take into account the proba-
bility and associated costs of providing incorrect guidance. 

• Actuation: In some situations, an AC system should simply perform
an activity for the user, in order to improve immediate safety and
security; for example, it might lock the doors at night after the user
has gone to sleep. 

This chapter will review academic and commercial research on assisted
cognition systems and then consider two projects from the University of
Washington in detail: an outdoor navigation system called Opportunity
Knocks and an indoor ADL tracking system called Barista. 

4.2 Overview of research on assisted cognition 
There are a number of research groups that have progressed in developing
assistive technology with an element of cognitive reasoning. 

4.2.1 Location, navigation, and wayfinding 
Location-sensing technologies, which are surveyed and evaluated in refer-
ence 8, are the foundation for wayfinding systems. More recently, the Place
Lab initiative9 is a project designed to make outdoor Wi-Fi localization
ubiquitous through mass collaboration. A single sensor can be augmented
with a user model, possibly learned, to improve its accuracy.10,11,12,13,14,15

Complementary to this work, Liao et al.16 presented a discriminative model
to automatically classify significant places and activities based on the frame-
work of relational probabilistic models.17 

A popular class of location-aware applications is the tour guide18, such
as Campus Aware19 and GUIDE.20 Such tour guides are precursors to the
kind of wayfinding system with which we are concerned. 

4.2.1.1 Nursebot 
Nursebot is a project at Carnegie Mellon University that provides a robotic
platform for delivering navigation assistance to the elderly. This robot is
envisioned to operate under the auspices of a community living home and

AU: Changes 
to #s ok?

!"#$%&''()*+,,-./0,>$,,3456.78,90:;0+<0=,$>8,#''",,1?@2,-3



82 Pervasive computing in healthcare

helps users make it to appointments on time and provides directions to get
there as well. 

Nursebot requires caregiver support to update its understanding of the
world: for example, the remote location of people and the state of their
schedules. Because it is a robotic platform it only makes use of sensors
embedded on the robot, although in principle extending the robot’s knowl-
edge to a network of distributed sensors would be possible. 

Nursebot’s navigation is based on robotic mapping technology and
laser-range finders. Potential destinations are identified on a known map.
When an elderly individual indicates a potential destination, Nursebot plans
a route to the location and executes the plan. The plan is updated according to
real-time laser-range finder inputs, which help to regularly update the position
of the robot and the robot’s knowledge of the people in the environment.

4.2.1.2 IMP 
Closely related to Nursebot is IMP[21]. a walker that is augmented with a
laser-range finder and navigational reasoning. When a user wants to go
somewhere in the mapped facility, he or she can indicate the destination on
an attached computer and a path-planning algorithm will guide the user to
the destination using an arrow. Onboard sensors monitor progress and assist
the user in getting to the destination.

One of the design decisions that this system made was to navigate a
person directly through the use of a displayed arrow. This puts a high burden
on the navigational system and sensor suite to avoid leading users into
dangerous environments that cannot be sensed by the walker. This is prob-
ably not a large concern for controlled environments such as nursing homes
but would be a problem for outdoor transportation assistance.

4.2.2 Wandering alert systems 
A number of companies have attempted, with varying success, to create
wandering alert systems. Some have been stand-alone systems, such as
Digital Angel, and others have been integrated into smart assisted living
environments, such as Elite Care assisted living homes. The company Inde-
pendent Living has an installable system that promises to monitor both
ADLs and wandering and alert a caregiver when programmed parameters
are exceeded.

4.2.3 Home ADL tracking and support 
There are many research groups that apply ubiquitous and wearable com-
puting to the goal of aging in place.

4.2.3.1 Smart Homes 
One of the first and best-known smart home projects is Georgia Tech’s Aware
Home.[22] This project experimented with many technologies for capturing
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low-level sensor data about human activities but did not focus on automated
activity recognition. 

The MIT House project developed an instrumented condominium for
studying activity recognition in a naturalistic environment.23 This space is
designed as a living laboratory from which experiments in activity recogni-
tion can be conducted in a naturalistic manner. From this line of research a
variety of activity recognition research has been published that explores how
simple sensors can recognize activities as they are being performed.24,25

The University of Florida’s Mobile and Pervasive Computing Laboratory
has several projects that are directed at cognitive assistance for the elderly,
including meal preparation assistance and preliminary research into using
cell phones for cognitive assistance.26 

The Bath Institute for Medical Engineering developed a number of pro-
totype commercial applications of cognitive devices and collaborates with
Dementia Voice, a dementia services center for the southwest of England,
and Housing 21, a U.K. housing association. Some of their projects include
a cooker monitor (an instrumented stove that monitors for dangerous situ-
ations such as gas leaks, smoke, or burning pans); a misplaced-object finder;
and a tap monitor (an instrumented faucet that controls temperature and
prevents flooding). 

4.2.3.2 COACH 
The COACH system (Cognitive Orthosis for Assisting aCtivities in the
Home) aims to address all aspects of ADL performance, from recognition to
guidance, for the specific tasks of bathroom activities27. The current system
has been tested for assisting people with advanced dementia with hand-
washing. 

COACH is an adaptive device that learns by using Markov decision
processes for how best to guide a user through the process of washing hands.
The sensor input for this task is an overhead camera located over the sink,
which is processed primarily for the location of relevant objects and then
becomes the source of information for the decision process. This work is
noteworthy for its use of verbal prompts that increase in specificity as the
user becomes less and less likely to achieve the goal of handwashing. Of all
the systems mentioned here, it targets individuals with the most severe forms
of dementia. 

4.2.3.3 Autominder 
Autominder28 is a planning assistance system that is designed to help a user
meet scheduling goals for day-to-day activities. Its main reasoning compo-
nent is a temporal constraint satisfaction engine that can determine when
activities should be performed in order to avoid conflicts with other activi-
ties. Autominder’s prompting module tries to minimize the number of times
it interrupts the user. For example, if the user is scheduled to perform two
activities at around the same time (for example, taking meds and brushing
teeth), Autominder will combine the prompts. 
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4.2.3.4 PDA-based reminding systems 
PEAT29 is a commercial product that has many of the same goals as Auto-
minder. It is built on a PDA platform and its goal is to help individuals who
experience cognitive difficulty when formulating and following plans. It
allows a caretaker to enter information about the time and steps of each task
to be performed and then uses sounds and graphical alerts to guide the user
through the tasks. The user manually clicks the PDA after each step; no
automated activity recognition is attempted. 

The AbleLink company does research and production on practical com-
puter-based systems for supporting people with cognitive disabilities. Like
PEAT, AbleLink has developed and tested PDA-based task-prompting sys-
tems, mainly for users with mental retardation.5 

4.2.3.5 Wearable activity recognition systems 
There has been much recent work in using wearable sound, video, and
acceleration sensors and computers for activity recognition, both individu-
ally and combined. Later we describe work on activity recognition using
RFID-tagged household objects and a wearable tag reader that led to the
Barista system.30 A theme of much of this recent work is that “heavyweight”
sensors such as machine vision can be replaced by large numbers of tiny,
robust, easily worn sensors.31 

4.3 Opportunity knocks: assisting outdoor navigation 
We now turn to detailed case studies of two prototype assisted cognition
systems, beginning with the navigation system Opportunity Knocks (here-
after OK). Many ADLs, such as working, shopping, going to a doctor’s office,
or attending social events, require a person to move throughout his or her
community. Individuals with cognitive disabilities must generally rely on
rides from caregivers, use point-to-point taxi or shuttle services, use public
transportation, or restrict their movements to places reachable by foot. The
first two are often unavailable or affordable, and few cities are so compact
that they can be easily traversed by foot, so we will concentrate on public
transportation. 

Public transportation provides a variety of cognitive challenges, such as
remembering transit schedules; getting on the correct bus or train; determin-
ing when to get off; making changes between vehicles; and recovering from
errors. These challenges are so great that many cognitively disabled individ-
uals become housebound. However, if impaired individuals had effective
compensatory cognitive aids to help them use public transportation, their
independence and safety would improve, they would have new opportuni-
ties for socialization and employment, and stress on their families and
caregivers would be reduced. 

This idea of a personal navigation aid is substantially different from
current commercial GPS navigation systems. Today’s personal GPS devices
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are typically optimized for a particular mode of transportation, such as
driving in a car or hiking cross-country. The personal navigation aid we
propose would help a user perform complex transportation plans that
involve moving between modes of transportation—for example, walking to
a bus stop, riding on a bus, and then walking again. The system not only
tracks the person’s location, but also the mode of transportation and the
status of the transportation plan. 

Additionally, because our target audience is cognitively disabled, this
solution should not require a user to explicitly program a device or to always
take the initiative in using it. We will describe a system that learns a user’s
pattern of public transportation use, predicts the user’s current transporta-
tion goals, infers user errors, and provides proactive assistance. 

4.3.1 A usage scenario 
In order to ground our system, we present a running example that will help
illustrate the most important features of OK. The steps of the scenario
are illustrated in Figure 4.1. John works at a cafeteria at the university. One
day he leaves work to go home and is momentarily confused about where
to go. He consults his OK system, which is running on his GPS-enabled cell
phone. OK offers images of four destinations that he typically travels to after
work: home, his doctor’s office, and the homes of two of his friends (A). OK
has learned two different plans for John to get home from work: he can walk
to a bus stop and catch a bus home, or he can walk to the parking lot where
he gets a ride with a work colleague. Because OK is uncertain about which
plan is correct for the day, it asks John to choose between the two (B). He
selects the bus icon, and OK provides walking directions to the bus stop (C)
and instructs him to get on the #17 bus. Unfortunately, John erroneously
gets on the #19 bus, which initially travels along the same route as the #17,
but which ultimately goes to John’s friend’s house, rather than to his own
home. However, once the #19 departs from the common portion of the route,
OK recognizes the error (D). The system alerts John and immediately con-
structs a repair plan to get him home, using its general knowledge of the
transit system (E). OK guides him to exit the bus, walk to a nearby stop
where he can board the #17, and resume his journey home (F). 

4.3.2 System architecture 
Figure 4.2 diagrams OK’s overall system architecture. The data flow of the
system starts at a sensor beacon that is carried by a user. The sensor samples
the environmental context of the user and forwards this information over a
secure Bluetooth connection to the cell phone. The cell phone initially acts
as a network access point and again forwards the context information to a
remote server over the high-speed GPRS data network. The remote server,
which is running the OK software, uses the sensor information in conjunction
with Geographic Information Systems’ (GIS) databases to localize the user.

AU: Define/
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Figure 4.1 Scenario of Opportunity Knocks in action (see text for description).
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When the software has sufficient confidence in the position of the user, it is
then able to suggest opportunities about which the user may want to know.
These opportunities are sent back to the cell phone for display through the
user interface. If an urgent opportunity, such as a plan for recovering from
boarding the wrong bus, is recognized, the phone proactively alerts by
making a door-knock sound; otherwise the phone remains passive with
information available for reference by the user. If the user selects an oppor-
tunity, such as a route to a frequent destination, the cell phone requests
supporting information from the server, which may require referencing
real-time information about bus schedules. 

We chose a cell phone as the client hardware because of its role as a de
facto standard for a portable computing device. It has inherent value that is
related to its primary function as a phone and for many people it is as
common to carry as a wallet or a purse. As a result, it is likely to be a familiar,
nonstigmatizing method of delivering assistive services. In the cell phone
market products span from a traditional phone to a personal digital assistant
(PDA). We opted for devices that were more like traditional phones rather
than smartphones because of their ubiquity, simple interface, and limited
maintenance requirements. 

The system currently uses a Nokia 6600 cell phone. The Nokia 6600
phone is a GSM phone that has a wide range of features required by OK.
First it supports the J2ME mobile information device profile (MIDP) 2.0 that
provides support for secure networking, serial port connection support, and
the application management system—a push registry that enables autho-
rized applications to be launched remotely. Some model-specific features of
the phone that we utilize include a high-resolution (176 × 208 pixels),
high-color (16-bit) screen, a digital camera, Bluetooth support, and
high-speed data network capabilities (GPRS). 

When the user desires transportation assistance, he refers to the phone
and observes up to four images of predicted destinations (later we describe
how this selection is made). If he would like to go to one, he selects it. If the
system has observed the user going to this destination in different ways (for
example, by foot or by bus) it will prompt him for the method he would
like to take. The previously observed route is then provided in text form.
The system will not present destinations to which the user hasn’t previously
traveled, but it will allow the user to select a familiar destination even if it
has never observed the user getting there from the current location. In this
case OK presents a route that is based on a real-time bus route–planning

Figure 4.2 Architectural diagram of Opportunity Knocks.
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service provided by the local transit authority. In the course of this interac-
tion the user did not have to provide any information about where he was,
and only a very small amount of information about where he wanted to go,
yet the system was still able to route him effectively. 

There are two occasions when the phone might become proactive and
make a knocking sound. The first is when the system has high confidence
that a novel or erroneous event has occurred. The second is when the system
identifies that the user is at a new significant location and may wish to
photograph it using the phone’s camera. In the future, whenever the system
wants to refer to that location, it simply uses the photo to identify the spot.
Then the user does not need to input or recognize GPS coordinates or street
addresses. A further advantage of this approach is that the user can decide
what is visually meaningful about the location. 

The current prototype system does not make use of voice prompts. Using
voice is an obvious extension and is being incorporated in the next version
of the system. 

4.3.3 The inference engine 
The inference engine that drives OK must learn and reason about the user’s
movements. As outlined earlier, the system must learn about its user’s trans-
portation routines in an unsupervised and unobtrusive manner, be able to
predict likely destinations the user may want to go to at any given moment
in time, and be able to recognize anomalous behavior. Because of the inherent
uncertainties about human behavior as well as the possible errors from maps
and GPS measurements, OK must reason probabilistically. 

Ashbrook and Starner11 have proposed using a second-order Markov
model as a predictive tool for reasoning about likely destinations toward
which a user may next travel. In contrast to our desired behavior, this model
is not able to refine estimates of the current goal using GPS information
observed when moving from one significant location to another. Because
significant locations might be long distances away, this causes an unaccept-
able lag in noticing unusual behavior and significant amounts of GPS infor-
mation are disregarded. 

Patterson et al.13 proposed using a dynamic Bayesian network (DBN)
for inferring a user’s transportation mode and location on a street grid from
GPS data. Although this approach provided accurate tracking, it had poor
predictive power, because the model had no representation of a user’s des-
tinations or transportation plans; information about the user’s patterns of
movement was only recorded as the probability of the user turning in a
particular direction at each street corner. 

In order to overcome these limitations, OK employs the new hierar-
chical DBN model representing transportation routines introduced by Liao
et al.32 The new model subsumes the capabilities of the previous models
and bridges the gap between the raw sensor measurements and the abstract
goal intentions of a user. A brief discussion of this model follows; refer to
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reference 32 for full technical details of the model structure, inference, and
training.

Figure 4.3 shows the graphical structure of the new model. At the very
highest level of this model, goals gk (subscript k indicates the discrete time
step) are explicitly represented as significant locations. Transitions between
goals have specific probability distributions independent of the routes by
which they are reached. Each goal destination influences the choice of which
trip segment the user takes. Trip segments are sequences of motion in which
the transportation mode is constant. Each trip segment t includes its start
location tsk, end location tek, and the mode of transportation tmk the person
uses during the segment. Each trip segment biases the expectation over the
mode of transportation and the changes in location. The mode of transpor-
tation m, in turn, determines the location and velocity distribution of the
user. At the bottom level, we denote by xk = <lk,vk > the location and motion
velocity of the person. Edge transition τk indicates the next street when
passing an intersection and data association θk “snaps” a GPS measurement
onto some streets around it. The switching nodes fkg, fkt, and fkm indicate when
changes in a variable’s value can happen. 

An efficient algorithm based on Rao-Blackwellised particle filters33,34 has
been developed to perform online inference for this model. At the lowest
level, location tracking on the street map is done using graph-based Kalman
filtering. At the highest level, the joint distribution of goals and trip segments
is updated analytically using exact inference techniques. As a result, this

Figure 4.3 Hierarchical activity model representing a person’s outdoor activities. The 
top level estimates the current goal, the middle layer represents segments of a trip 
and mode of transportations, and the lowest layer estimates the person’s location on 
the street map. Figure reproduced from reference 32.
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model makes it possible to reason about high-level goals (or significant
locations) explicitly. The contribution of this model is that it considers not
only previous significant locations visited but also the current location and
the path taken so far to reason about likely destinations. 

The parameters in the model are estimated in an unsupervised manner.
This is a three-step process. In a first pass through the data, the possible
goals for a user are discovered by observing when the user stays at a location
for a long time. Then in a second pass, the usual parking spots and bus stops
are inferred using an expectation-maximization algorithm[35]. Finally, the
transition matrices at all levels are reestimated simultaneously using a sec-
ond expectation-maximization procedure with the full model. The learning
process does not require any labeled data and therefore requires no inter-
vention from the user. 

To detect abnormal events, the approach uses two models with different
transition parameters. The first tracker assumes the user is behaving accord-
ing to his personal historical trends and uses the learned hierarchical model
for tracking. The second tracker assumes a background model of activities
and uses an untrained prior model that accounts for general physical con-
straints but is not adjusted to the user’s past routines. The trackers are run
in parallel, and the probability of each model given the observations is
calculated. When the user follows his ordinary routine the learned hierar-
chical model should have a higher probability, but when the user does
something unexpected the second model should become more likely. To
compute the probability of each model, we use the concept of Bayes factors,
which are standard tools for comparing the quality of dynamic models based
on measurements. 

The above approach can detect unexpected events but cannot distinguish
errors from deliberate novel behavior. An important contribution of OK,
however, is the ability to differentiate these cases using knowledge of the
user’s destination. This is possible because there are times when the system
knows where the user is going: for example, if the user asks for directions
to a destination, if a caregiver or job coach indicates the “correct” destination,
or if the system has access to a location-enabled datebook. In those situations
we can clamp the value of the goal node in our model and reinterpret the
low-level observations. When the observations diverge significantly from
the clamped high-level predictions, the system is able to signal a possible
error.

This model can spot anomalous behavior even if the user follows a
well-trodden path, provided that path does not lead to the specified des-
tination. For example, in the scenario described above, OK determines that
John is on the wrong bus to get home, even though he sometimes does
take that bus to go to his friend’s house. A small graph illustrating this
example of error detection when there is a clamped goal appears in step E
of Figure 4.1. 
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4.3.4 Status 
OK was built as a proof-of-concept prototype of an assisted cognition nav-
igation system. It was successfully tested on real data gathered by students
enacting various scenarios, such as the one described above, using models
learned by using the system for approximately two hours a day for three
weeks. However, the prototype was not robust enough for clinical trials. A
particular problem of the architecture is that it required a continuous (wire-
less) Internet connection to a central computer server where inference was
performed. 

OK is currently being reengineered to be more robust and to perform
inference on a Windows CE PDA carried by the user. Development leading
to clinical trials for subjects with navigation difficulties due to brain injuries
is being supported by the National Institute for Disability and Rehabilitation
Research. 

4.4 Understanding home activities 
We now turn to our second case study with the assisted cognition system
Barista. Indoor activity recognition has many potential benefits. Tracking
the performance of ADLs is the first step in creating systems for ADL
prompting and guidance. Furthermore, ADL monitoring is an ongoing,
important activity in healthcare. For example, in the United States, any
nursing home that receives Medicare funds has to record and report ADLs.
Trained caregivers spend a great deal of time measuring and tracking ADL
accomplishment for persons under their care. However, manual monitoring
is time-consuming, error prone, and invasive. Automated aids that can
address these issues and reduce the record-keeping burden on caregivers
are of great interest. 

Most systems that have been built to recognize home activities have been
limited in the variety of activities they recognize, their robustness to noise,
and their ease of use. In particular, most previous work on activity recogni-
tion has used sensors that provide only a very coarse idea of what is going
on—for example, by detecting movement in a room, one might infer that an
activity associated with that room is happening36. Also previous work
required deployment of an extensive custom-sensing apparatus to monitor
each task27,37,38,39,40 or relied on solutions to deep technical problems such as
machine vision.41,42 

In this section we describe an approach to activity recognition that
addresses these problems by combining the use of wearable RFID tag sensors
to determine when a user is manipulating physical objects, with a simple
and flexible probabilistic framework for modeling activities in terms of the
object touches. 
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4.4.1 Sensing using RFID 
RFID tags are the size of postage stamps (including adhesive backing), have
no batteries, and can withstand day-to-day use for years. A tag reader sends
a radio frequency pulse to the tag, which responds with a unique identifier.
Depending on the power of the reader, a tag can be sensed from a few inches
to several yards away. 

RFID deployment involves tagging tens to hundreds of objects in the
environment, then entering each tag identifier into a database. This can be
done incrementally; the more tags there are, the broader and deeper
the potential coverage of ADLs. Furthermore, market forces are pushing
toward the near-universal use of RFID tags on essentially all products. Such
preexisting tags could then be used for applications such as ours by using
a database to map tag IDs to types of objects. 

Recently Intel Research and other companies have begun to develop
small wearable tag readers. Such readers can determine when a wearer
touches a tagged object. The work described in this chapter used a
short-range RFID reader built into the palm of a glove, with a Crossbow
Mica Mote radio, a USB-based power supply, and a rechargeable battery.
Intel Research has more recently developed a reader in the form of a small
bracelet. 

ADLs that would be difficult or impossible to detect using either coarse
location sensors or state-of-the-art machine vision can often be recognized
on the basis of contact with a tagged object. For instance, consider trying
to determine if a person is reading. Location alone is clearly inadequate,
while reliably recognizing the act of “reading” from a video stream under
a wide range of orientations, positions, and lighting conditions is far beyond
the capabilities of machine vision for the foreseeable future. On the other
hand, if all the books, magazines, and newspapers in the home were tagged,
determining when a person was reading could be done quite reliably. 

Although data from RFID tags are less noisy than many other kinds of
sensor data, any real-world data streams still contain extraneous readings
(for example, when the user’s hand happens to brush by a tagged but unused
object) and missing readings. Therefore we propose to interpret the data
using probabilistic models that are robust in the face of noisy data. 

4.4.2 Modeling activities 
Representing ADLs in terms of the gross manipulation of physical objects
requires us to face the problem of developing a formal model that satisfies
a number of constraints: first, the model should easily express significant
properties of and distinctions between activities, while remaining robust to
unimportant variations in activity performance; second, the parameters
of the model should be easily estimated; and third, the model should be
implementable in a manner that supports efficient and scalable inference. 
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Descriptions of activities from a wide variety of sources, including
healthcare literature, instructional manuals, and recipes typically break an
activity down in a set of steps, where each step involves manipulating one
or more objects over some period of time. Although textual descriptions
usually present the steps in a total order, the underlying logical dependencies
between steps often form only a partial order and include alternative and
optional steps. The kinds of objects used in a step are usually flexible, and
it is not difficult to form a coarse estimate on the probability of object use
on the basis of the description. For example, while making a cup of tea (used
as a running example in this section), we might estimate that the probability
of using a spoon to stir the tea is 75 percent, allowing for cases where one
uses a different utensil or none at all. 

Figure 4.4 gives an example of modeling the activity “making tea” in four
stages: getting out the supplies, heating the water, steeping the tea, and fla-
voring (i.e., adding sugar or lemon to the tea). The first stage consists of two
steps that must both occur but in any order: this is indicated by a conjunctive
arc across the first pair of outgoing arrows and the following pair of incoming
arrows. This is an example of a partial ordering constraint. The disjunctive
choice of which of two ways to heat the water (using the microwave or using
the stove) is indicated by a set of plain arcs. The fact that the flavoring step is
optional is represented by a disjunctive arc that bypasses the step. 

Each step also has a Gaussian duration. Duration information can provide
important constraints for distinguishing activities that use similar objects. For
example, washing your hands at the kitchen sink takes about a minute, while
washing dishes at the kitchen sink takes about ten minutes. Finally, each step
includes a set of objects that is expected to be used. (In Figure 4.4 the duration
and object information are only shown for the “boil water” step.) The value
associated with each object is termed an object use probability and is the
estimate of the probability that the object is manipulated at least once before
the step completes. Also included in the model but not shown in the illus-
tration are prior probabilities on each activity as a whole and on choice
transitions within a model (such as the probability of including the optional
“flavor tea” step); by default these are uniform across choices. 

Figure 4.4 Making tea represented as an activity graph.
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4.4.3 Coarse-grained ADL recognition 
Matthai et al.30,43 demonstrated that RFID sensors and probabilistic models
of the form described above could reliably distinguish the performance of
a large number of common ADLs. They chose fourteen ADLs to monitor,
such as using the toilet, completing housework, using an appliance, taking
medication, etc. (It is notable that the fourteen ADLs tested were eleven more
than any other system has attempted.) One of the experimenter’s homes was
instrumented with 108 tags. Next, an activity model was created by hand to
relate ADLs to tagged objects, using rough prior estimates of the timing and
probability of object use, and a uniform prior estimate over all transitions
from the end of one activity to the start of another. 

Fourteen test subjects were each asked to perform the activities in any
manner they liked and in any order, while wearing an RFID tag-reader glove.
Activities took from twenty to sixty minutes, depending on the subject. A
particle-filter inference engine computed the most likely sequence of activ-
ities performed by each subject, which was compared to a manual log of the
actual sequence. The system did well on average, with a precision of 88
percent (correct labeling of recognized activities) and recall of 73 percent
(percent of actual activities correctly recognized). To place these numbers in
further context, we note that this was the first time any system had been
created that could handle nine of the fourteen ADLs. 

4.4.4 Barista: fine-grained ADL recognition 
Although some of the ADLs in the work described above used some objects
in common, most could be uniquely distinguished by the manipulation of
particular objects. The purpose of the Barista system was to determine if the
same general approach could be used for fine-grained tracking of interleaved
activities that shared many common objects.44 In particular, we wished to
find the simplest and most robust modeling methodology. 

Barista focused on a morning routine in a small home. The following
eleven activities were considered: 

1. Using the bathroom
2. Making oatmeal
3. Making soft-boiled eggs
4. Preparing orange juice
5. Making coffee
6. Making tea
7. Making or answering a phone call
8. Taking out the trash
9. Setting the table

10. Eating breakfast
11. Clearing the table
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To create the data set, one of the authors performed each activity twelve
times in two contexts: Each activity was performed by itself twice, and then
on ten mornings all of the activities were performed together in a variety of
patterns. In order to capture the identities of the objects being manipulated,
the kitchen was outfitted with sixty RFID tags placed on every object touched
by the user during a practice trial. For example, in the bathroom the door
knob, toilet handle, and faucet handle were tagged. In the kitchen, tags were
placed on appliances, cookware, dishes, and food packages. Deploying the
tags required less than two hours. 

In this experiment the user simultaneously wore two RFID gloves
(unlike in the first experiment in which one glove was used). The time and
ID of every object touched was sent wirelessly by the glove to a database
for analysis. The mean length of the ten interleaved runs was 27.1 minutes
(σ = 1.7) and object touches could be captured at approximately ten per
second. The mean length of each uninterrupted portion of the interleaved
tasks was seventy-four seconds. Most tasks were interleaved with or inter-
rupted by others during the ten full data-collection sessions. 

The activities were not performed sequentially or in isolation from each
other. Whenever there was a pause in an activity, progress was attempted
in other activities (such as when waiting for water to boil) and some activities
interrupted others at uncontrolled times (such as answering the phone). 

4.4.5 Modeling choices 
In order to justify the inference model that we ultimately developed we
proceeded systematically by first focusing on accuracy and then on robust-
ness. We developed the simplest possible probabilistic model, evaluated its
performance, and then augmented it with features that were sufficient to
disambiguate errors. In this section we present the techniques we used to
improve accuracy by describing the two baseline models and another model
that incorporated reasoning with aggregate features. The models increase in
complexity by adding representational power. In subsequent sections we
present abstraction techniques that we used to improve robustness. 

The first baseline model consists of independent, single-state hidden
Markov models (HMMs) for each activity. Used in a generative context, each
state emits an object-X-touched event or a no-object-touched event at
each tick of the clock. Each state’s emission probability was trained on the
twelve examples of a user performing the corresponding activity. After
training, the probability of emitting a no-object-touched event was equalized
across all HMMs so that the timing characteristic of the model was com-
pletely captured by the self-transition probability. To infer the activity being
performed at each second, each HMM was presented with a sev-
enty-four-second window of data (the average activity duration) ending at
the query second. This produced a log-likelihood value for each model at
each tick of the clock. The activity model with the highest log likelihood was
used as the system’s estimate of the current activity. This model was trained
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and tested on data in which object types were equalized so that there was
no distinction made between spoon #1 and spoon #2, for example, but both
appeared identically as a “spoon.” 

The second baseline model connected the states from the eleven inde-
pendent HMMs of baseline A in order to be able to learn about and subse-
quently smooth the transitions between activities. We retrained this HMM
using the ten examples of the user performing the eleven interleaved activ-
ities. The no-object-touched emission probability was again equalized across
all states. This HMM was evaluated over the entire data window, and the
Viterbi algorithm35 was used to recover the activity at every time point given
by the maximum likelihood path through the state space. Again, this model
was trained and tested on data in which object types were equalized to
eliminate distinctions between instantiations of objects. 

For our third model, we chose to examine the effect of reasoning about
aggregate information. The specific feature that we wanted to model was
how many objects of a given type were touched during the course of the
current activity. This aggregate can only be computed if globally unique
object instances can be identified. This choice was motivated by the desire
to differentiate activities that use the same object repeatedly from those that
use many different objects of the same type. For example, consider the
activities of setting the table and eating breakfast. The first involves single
touches of several different plates, spoons, and cups, while the latter involves
touching the same plate, spoon, and cup repeatedly. 

Aggregate features can be handled in a DBN model by introducing
variables that keep track of how many different instances of each object type
are touched during the performance of an activity, in addition to a global
variable whose value is the current activity. At the end of an activity (i.e.,
the value of the global variable changes), the final counts are treated as
pseudo-observation. See Patterson et al.44 for details. 

The various features of these models are summarized in the following
table:

In this table, exponential timing distributions refer to the fact that the model
expects the length of an uninterrupted portion of an activity to occur with
a duration that is distributed according to an exponential distribution. The
parameters of the distribution are learned from the data. This timing distri-
bution is a result of the structure of the HMMs and DBNs used. Interactivity
transitions refers to the ability of the model to represent the tendency of
certain activities to follow or interrupt other activities more or less often.

Exponential 
Timing 

Distribution 
Interactivity 
Transitions 

Aggregate 
Information

Independent HMMs 
Connected HMMs ! !
Aggregate DBN ! ! !
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Finally, aggregate information refers to the ability of the model to represent
aggregations over individual objects. 

4.4.6 Accuracy experiments 
Our accuracy experiments were conducted with leave-one-out cross-valida-
tion across the ten interleaved runs. We calculated two accuracy metrics.
The first was what percentage of the time the model correctly inferred the
true activity. This metric is biased against slight inaccuracies in the start and
end times and will vary based on the time granularity with which the
experiments were conducted. We also evaluated our models using a string
edit distance measure. In this case we treated the output of the inference as
a string over an eleven-character alphabet, one character per activity, with
all repeating characters merged. We calculated the minimum string edit
distance between the inference and the ground truth. A string edit distance
of one means that the inferred activity sequence either added a segment of
an activity that didn’t occur (insertion), it missed a segment that did occur
(deletion), or it inserted an activity that didn’t occur into the middle of an
activity (reverse splicing). A perfect inference will have a string edit distance
of zero. The string edit distance is biased against rapid changes in the activity
estimate and is tolerant of inaccuracies in the start and end times of activities.
The following table summarizes the results of the experiments:

The independent HMM model performed badly because it rapidly and
inaccurately switched between activities. The smoothing provided by the
connected HMM model gave much better accuracy. However, Figure 4.5
shows that the connected HMM model confused the activity “eat breakfast”
with the activity “clear the table.” The aggregate DBN distinguished these
properly and overall had a slightly improved accuracy and much better edit
distance error measure. 

4.4.7 Improving robustness 
One of the concerns with the previous models is how well they will respond
if someone used an object of a type that did not appear in the training data
but was functionally similar to objects that did appear. For example, in our
model we cooked oatmeal using a cooking spoon. Our inference should not
fail if the user performed the same task using a tablespoon. Likewise, if the
user makes tea in a cup rather than a mug, that should be a less likely but
still plausible alternative. To solve this problem we introduce the concept of
abstraction smoothing. 

Time-Slice Accuracy (σ) Edit Distance (σ)
Independent HMMs 68% (5.9) 12 (2.9)
Connected HMMs 88% (4.2) 9 (6.2) 
Aggregate DBN 87% (3.1) 7 (2.2) 
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In order to perform smoothing over objects we created a relational model
inspired by Anderson and Domingos.[45] Unlike the full power of that work,
however, we used a single hierarchical object relation rather than a lattice.
The hierarchy that we used was mined with supervision from the Internet
shopping site Froogle (see Figure 4.6). The name of each object was entered
into the shopping search engine and the hierarchy that was returned for that
object was inserted into the global object tree. In the case of objects with
multiple hierarchies, one was manually selected. 

The semantics that we applied to the resulting tree were that objects that
were close to each other in the graph were functionally similar. To specify
the notion of “close,” we weighted all edges on the graph equally and created
an all-pairs functional equivalence metric according to the following
formula, 

where Dist(Oi,Oj) is the shortest-path distance between Oi and Oj on the graph.
This says that when object Oi is expected in the model, it will be substituted

Figure 4.5 Sample connected HMM results. Ground truth is indicated by the thin 
line. Inference is indicated by the dots.
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by object Oj with probability P(Oi!Oj). The likelihood of substituting one
object for another falls off exponentially with distance in the hierarchy. 

To validate how well this technique worked when objects were substi-
tuted, we reran our experiments with abstraction smoothing added to the
aggregate DBN model. This resulted in an insignificant decrease in accuracy
of 0.1 percent and –0.1 in edit distance. 

Next, we reran our experiments with the same data streams, but with
all instances of a particular object replaced by other instances of functionally

Figure 4.6 A portion of the object abstraction hierarchy mined from an Internet 
shopping site. Objects in our training data are shaded. Abstractions are not shaded.
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similar objects of a distinct type. The following table shows our results for
one scenario: 

Whereas abstraction smoothing doesn’t greatly harm normal activity recog-
nition, it greatly increases robustness to object substitution. The metrics from
this table were generated by replacing a mug in all of the testing sequences
with a cup. In two of the baseline models accuracy is dramatically lowered,
but the abstraction model suffers a relatively modest decrease in accuracy,
especially according to the string edit metric. 

4.5 Summary
In this chapter we explored research on assistive technology for cognitive
disabilities that combines advances in sensors and artificial intelligence to
promote independence in the face of cognitive decline. By developing infor-
mation systems that augment cognition in the same way that physical
devices compensate for physical disabilities, we may be able to maintain
higher quality of life for suffering from cognitive decline due to aging,
trauma, or disease. At the same time, we can hope to reduce family caregiv-
ers’ emotional and financial burden. 

We looked at two possible avenues for assistance. The first is using an
outdoor activity recognition system based on GPS to help people who make
occasional cognitive errors recover safely. The second is an indoor activity
recognition system based on a wearable computing platform and RFID tags
that is designed to monitor which activities occur in a home. 

In the outdoor case, we demonstrated that such a system could success-
fully be built now, that the reasoning that such a system can perform is both
accurate and valuable, and that user–interface innovations make such a
system usable without extensive user programming. In the indoor case, we
saw that a single technology can subsume many previous activity recogni-
tion techniques in a way that is robust, easily deployable, and accurate at a
fine level of detail. 

An important challenge for work on assisted cognition systems is to
develop and test effective user interfaces that decrease, rather than increase,
a user’s cognitive load. Opportunity Knocks began to explore the space of
user interfaces, but the reliance on textual prompts would clearly be inap-
propriate for many users. The activity recognition system we described could
be used as one part of a larger system that not only tracked activities but
also provided prompts when necessary to help a user complete activities. 

Individual HMMs Single HMM
Aggregates with 

Abstraction
Mean Accuracy 52.5% 77.4% 81.2% 
Net Change –15.1% –10.9% –6.4% 
Mean Edit Dist. 24.7 35.6 8.8 
Net Change +12.7 +26.6 +1.1 
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A significant complication in building interfaces for assisted cognition
systems is that there is always the possibility that the system might misin-
terpret the data, so that what appears to be a user error might actually be a
system (modeling) error. The problem of weighing the probabilities of sys-
tem versus user errors, and the costs to the user of providing bad advice
versus not providing good advice, is naturally formulated as one of decision
making under uncertainty. Therefore we expect methods for solving such
decision-theoretic problems to play important roles in future research in this
area.
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