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Abstract We present an extensive three year study on
economically annotating video with crowdsourced market-
places. Our public framework has annotated thousands of
real world videos, including massive data sets unprece-
dented for their size, complexity, and cost. To accomplish
this, we designed a state-of-the-art video annotation user
interface and demonstrate that, despite common intuition,
many contemporary interfaces are sub-optimal. We present
several user studies that evaluate different aspects of our
system and demonstrate that minimizing the cognitive load
of the user is crucial when designing an annotation plat-
form. We then deploy this interface on Amazon Mechanical
Turk and discover expert and talented workers who are ca-
pable of annotating difficult videos with dense and closely
cropped labels. We argue that video annotation requires spe-
cialized skill; most workers are poor annotators, mandating
robust quality control protocols. We show that traditional
crowdsourced micro-tasks are not suitable for video annota-
tion and instead demonstrate that deploying time-consuming
macro-tasks on MTurk is effective. Finally, we show that by
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extracting pixel-based features from manually labeled key
frames, we are able to leverage more sophisticated inter-
polation strategies to maximize performance given a fixed
budget. We validate the power of our framework on diffi-
cult, real-world data sets and we demonstrate an inherent
trade-off between the mix of human and cloud computing
used vs. the accuracy and cost of the labeling. We further
introduce a novel, cost-based evaluation criteria that com-
pares vision algorithms by the budget required to achieve
an acceptable performance. We hope our findings will spur
innovation in the creation of massive labeled video data sets
and enable novel data-driven computer vision applications.

Keywords Video annotation · Large scale annotation ·
Data sets · Mechanical Turk · Crowdsource marketplaces ·
Tracking

1 Introduction

Sorokin and Forsyth (2008) made the influential obser-
vation that image labeling can be crowdsourced at low
costs through platforms such as Amazon’s Mechanical Turk
(MTurk). This approach has revolutionized static data an-
notation in vision, and enabled almost all large-scale image
data sets collected since then to be labeled (Deng et al. 2009;
Russell et al. 2008; Kumar et al. 2009). Contemporary com-
puter vision research has subsequently demonstrated the
value of massive data sets of labeled images such as the re-
sults from ImageNet (Deng et al. 2009), PASCAL (Evering-
ham et al. 2010), LabelMe (Russell et al. 2008), SUN (Xiao
et al. 2010), and TinyImages (Torralba et al. 2008).

The same does not hold true for video despite a corre-
sponding abundance of data, such as that from web-cams
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and public-domain archival footage (Kahle 2010). We be-
lieve that this is due to the dynamic nature of video data
which makes frame by frame labeling necessary but ineffi-
cient for manual labor. Inspired by popular successes such as
Yuen et al. (2009), Vijayanarasimhan and Grauman (2009),
Liu et al. (2008), we focus on cost effective and high quality
video annotation with MTurk. We show the results of three
years of experiments and experience in annotating massive
videos unprecedented for their size and complexity, with
some data sets consisting of millions of frames, costing tens
of thousands of dollars, and requiring up to a year of contin-
uous work to annotate. This extensive study has resulted in
our release of VATIC (Video Annotation Tool from Irvine,
California), an open platform for monetized, high quality,
crowdsource video labeling.

The contributions made in this paper are motivated by
our desire to uncover best-practices for monetized crowd-
sourced video labeling. In the remainder of this paper, we
describe our video annotation tool in detail:

In Sect. 2, we briefly review related work in designing
image and video annotation tools.

In Sect. 3, we present insights into the design of a user-
interface in which workers track objects through a contin-
uous video shot (to solve the problem in Fig. 1). To sup-
port our claims, we present user studies that demonstrate
contemporary annotation software is suboptimal. We have
found that video annotation is considerably more complex
than image annotation, likely due to the fact that temporal
data is difficult to visualize and edit.

In Sect. 4, we describe how to best use crowdsourcing to
annotate videos. In order to collect high-quality annotations,
we find it crucial to validate good workers and turn away the

Fig. 1 An example of the difficult problem that our interactive system
addresses. The red boxed player becomes totally occluded while many
players quickly change pose from standing to a prone position. The
referees commonly enter and leave the scene. The camera is not sta-
tionary. The ball exists in the pile of people, but even a state-of-the-art
vision algorithm is unable to determine its position

majority of MTurk workers. In this sense, we do not use
MTurk directly as a crowdsourced platform, but rather as a
market to identify reliable workers.

In Sect. 5, we analyze trade-offs particular to balancing
computer and human effort in video annotation by extend-
ing work that minimized labeling cost only along the dimen-
sion of human effort (Vijayanarasimhan and Grauman 2009;
Vijayanarasimhan et al. 2010). Although the “Turk philoso-
phy” is to completely replace difficult computer tasks (such
as video labeling) with human effort, this is clearly not effi-
cient given the redundancy of video. In contrast to LabelMe
video (Yuen et al. 2009), we show that one can interpolate
nonlinear least-cost paths with efficient dynamic program-
ming algorithms based on image data and user annotated
endpoints.

In Sect. 6, we analyze the total cost of labeling for various
combinations of human workers and cloud-computing CPU
cycles. We further demonstrate that our cost analysis can
be used as a error metric for evaluating vision algorithms;
rather than evaluating a tracker with disconnected measures
such as time-to-failure, we evaluate trackers using the dol-
lar amount in savings afforded when used in a monetized,
interactive crowdsourced platform.

Our hope is that our discoveries will spur innovation in
the creation of affordable, massive data sets of labeled video.
To encourage this, our final contribution is the release of
a simple, reusable, and open-source platform for research
video labeling.1

2 Related Work

With the rising popularity and success of massive data
sets in vision, the community has put considerable ef-
fort into designing efficient visual annotation tools. Deng
et al. (2009) introduced a crowdsourced image annotation
pipeline through ImageNet. Torralba et al. (2010) presented
LabelMe as an open platform for dense polygon labeling on
static images. Everingham et al. (2010) describe a high qual-
ity image collection strategy for the PASCAL VOC chal-
lenge. Von Ahn and Dabbish (2004) and Von Ahn et al.
(2006) discovered that games with a purpose could be used
to label images. Ramanan et al. (2007) show that exploit-
ing temporal dependence in video can automatically build
a data set of static faces. Welinder et al. (2010) propose a
quality control mechanism for annotation on crowdsourced
marketplaces. Vittayakorn and Hays (2011) describe quality
control measures without collecting more data. Endres et al.
(2010) study some of the challenges and benefits of building

1The software and data sets can be downloaded from our website at
http://mit.edu/vondrick/vatic.
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image datasets with humans in the loop. Yet, the same prin-
ciples that assist and motivate users to annotate static images
do not apply to dynamic videos.

Consequently, significant work has been completed in or-
der to build specialized interfaces tailored for video annota-
tion. Yuen et al. (2009) introduced LabelMe video, an on-
line, web-based platform that is able to obtain high-quality
video labels with arbitrary polygonal paths using homogra-
phy preserving linear interpolation, and can generate com-
plex event annotations between interacting objects. Mihalcik
and Doermann (2003) describe ViPER, a flexible and exten-
sible video annotation system optimized for spatial labeling.
Huber (2011) designed a simplified interface for video an-
notation. Ali et al. (2011) present FlowBoost, a tool that can
annotate videos from sparse set of key frame annotations.
Agarwala et al. (2004) propose using a tracker as a more re-
liable, automatic labeling scheme compared to linear inter-
polation. Buchanan and Fitzgibbon (2006) discuss efficient
data structures that enable interactive tracking for video an-
notation. Fisher (2004) discuss the labeling of human activ-
ities in videos. Smeaton et al. (2006) describe TRECVID,
a large benchmark video database of annotated television
programs. Laptev et al. (2008) further show that using Hol-
lywood movie scripts can automatically annotate video data
sets.

While these tools are effective at building large data sets,
they are not necessarily economical. The state-of-the-art is
optimized to obtain high quality labels, but as a practical
matter, we must also be concerned with cost. In order to
scale up to the next generation of data sets, we must build
a system that can annotate high quality, massive videos
without exhausting our community’s funding and tiring our
workers. In this paper, we propose such a system for large
scale, high quality and economical video annotation plat-
form.

3 User Interface

We wish to design an interface that allows workers to an-
notate every object of interest in a video. Our users should
be able to both track objects, represented as spacetime tra-
jectories of bounding boxes, as well as mark attributes, rep-
resented as discrete flags associated with a trajectory for a
time interval. However, since humans have troubling visual-
izing space simultaneously with time, designing this graph-
ical interface presents subtle, challenging problems that,
if not properly addressed, make video annotation unnec-
essarily labor intensive. Despite this additional complex-
ity, most contemporary video annotation interfaces are sub-
optimal because they assume that the same principles that
help users annotate space can be applied to time. In this sec-
tion, we present a more efficient interface for video anno-
tation, shown in Fig. 3. We demonstrate, through extensive

user studies, that popular design choices are sub-optimal and
we show that, despite intuition, more constrained and sim-
pler interfaces provide a superior annotation experience.

3.1 User Studies

Throughout this section, we evaluate different modes of an-
notation by conducting user studies. Since we reject the
status quo in video annotation interface design, we com-
pleted the study to support our claims. In each study, we
asked annotators to label videos shown in Fig. 2. We picked
these videos because they each represent common problems
in video annotation: the scripted video has large objects
quickly moving with linear yet dynamic motion; the basket-
ball video is extremely difficult due to small, similar looking
objects with frequent occlusions and nonlinear motion; and
the VIRAT video (Oh et al. 2011) has slow moving and sta-
tionary cars that follow linear paths.

We located research subjects both by hiring dedicated
users and discovering capable workers on MTurk. We found
subjects on MTurk by contacting our highest earning work-
ers and offering them the opportunity to participate in our
user study. Upon accepting our offer, they were redirected
to a private website and required to read instructions before
completing the study. We compensated MTurk workers at
about $7.00 per hour. Our dedicated workers are experts in
computer vision and were compensated fairly in accordance
with standard university pay scales. In both cases, we asked
annotators to label every video under varying conditions. We
randomized the order that annotators labeled videos, a nec-
essary step to reduce a learning and memorization bias; once

Fig. 2 The three segments from our study that dedicated annotators la-
beled in order to compare fixed rate vs. user defined key frames. (a) Is a
group of people quickly walking around in a complex manner. (b) Con-
sists of a very difficult clip from the basketball game with ambiguous
motion and nonlinear paths. (c) Is a parking lot with a couple of cars
driving in the street and following linear paths
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Fig. 3 Our online, interactive video annotation user interface. Users
can play the video, draw bounding boxes around objects of interest, and
track each object throughout its lifetime. Each object can have multi-
ple attributes that further describe its actions. Workers can adjust the

play back speed, seek throughout the timeline, and mark objects as oc-
cluded or off the screen. Since scenes quickly become cluttered, users
can lock objects to prevent accidental modifications to their paths. Key-
board shortcuts are available

an annotator has wrestled with a video sequence, labeling
it again becomes significantly easier. We then timed how
long a user took to annotate each video to evaluate which
modes are more efficient, and we also solicited qualitative
feedback, such as “which interface felt faster?” or “which
interface did you prefer?” Our results are surprising and
demonstrate that contemporary video annotation platforms
are sub-optimal.

3.2 Key Frame Schedules

Since manually labeling every frame in a video is clearly in-
efficient, our system requires users to annotate only a sparse
set of key frames. We then use a variety of interpolation
methods (discussed in Sect. 5) to predict the annotations on
the remaining frames. In the following experiments, we use
simple linear interpolation to validate aspects of our inter-
face. Users are allowed to playback the video where they see
the linearly-interpolated paths in real-time. As one might ex-
pect, the choice of key frames can have a significant impact
on the user experience. The more key frames the user must
label, the longer it takes for the user to annotate a video.
Therefore, an optimal key frame strategy will minimize the
number of key frames that a user must annotate. There are
two primary types of key frames: fixed rate and user defined.

Fixed key-frames: A simple key frame schedule is to an-
notate each object on a fixed rate interval where the user
labels every T frames. For difficult videos like a basketball
game with dynamic motion, we require a high frequency of

key frames, so we must set T to be low, while for easier
videos like VIRAT, we can set T to be much higher. In-
deed, fixed rate key frames allow the user to annotate video
mechanically: once the video pauses, simply update the an-
notations. However, in order to capture high quality labels,
the annotation frequency must be high enough to handle ev-
ery situation. If an object has chaotic motion for only a few
seconds but linear motion otherwise, T must be low enough
to handle to the chaotic motion, resulting in wasted clicks
during the linear motion.

User-defined keyframes: To overcome these issues, we
could instead adopt a user defined key frame schedule. This
approach would allow the user to pause the video on any
frame and update annotations. When an object moves in a
straight line (such as a car driving down the street), users
can label the end points of the path and rely on linear in-
terpolation to recover the remaining annotations. This al-
lows the user to dynamically adjust the key frame frequency:
for mostly stationary frames, perhaps only a few annota-
tions are necessary, but for chaotic frames, the user can la-
bel frequently. Assuming the user can quickly pick intelli-
gent key frames, this approach can lead to an optimal key
frame schedule. Most contemporary video annotation sys-
tems such as LabelMe video or ViPER deploy user-defined
key frames.

User-study results: Although most existing annotation
systems employ user defined key-frames, our results demon-
strate that fixed rate key frames are significantly faster than
user defined key frames. Essentially, users are not accurate at
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Table 1 A comparison of annotation time on fixed rate vs. user defined
key frames. Though almost all existing annotation systems employ user
defined key-frames, our results demonstrate that fixed rate key frames
are superior. We asked dedicated workers to label the three segments
shown in Fig. 2. Times are in seconds. Ratio is fixed over user. Av-
erages are arithmetic mean for time, and geometric mean for ratios.

Subjects with asterisks did the user defined keyframes second, so they
may have memorized the video when doing user defined key frames.
Notice that basketball speed is strongly correlated with the order of ex-
periments. Our results on the scripted data are statistically significant
(at a p-value of .04)

Subject Scripted Basketball VIRAT

User Fixed Ratio Saved User Fixed Ratio Saved User Fixed Ratio Saved

A 599 463 0.77 136 1,457 1,323 0.91 134 220 244 1.11 −24

B 653 247 0.38 406 4,555 2,275 0.50 2,280 176 178 1.03 −2

C 476 275 0.58 201 1,216 830 0.68 386 338 215 0.64 123

D 772 432 0.56 340 1,505 1,497 0.99 8 489 302 0.62 187

*E 605 371 0.61 234 935 1501 1.61 −566 269 231 0.85 38

*F 654 472 0.72 182 1,672 1,858 1.11 −186 372 326 0.87 46

*G 235 193 0.82 42 591 696 1.18 −105 165 120 0.73 45

*H 312 331 1.06 −19 656 748 1.14 −92 172 164 0.95 8

Mean 538 348 0.66 190 1,573 1,341 0.96 232 275 223 0.83 53

estimating the optimal locations for user-defined key frames
because the in-between interpolation strategy can be non-
intuitive (even for simple linear interpolation). As a result,
users spend considerable mental effort in deciding when to
pause the video, as well as effort in correcting errors. These
results are summarized in Table 1. In the user-defined key
frame experiment for the scripted video, users watched the
video multiple times to correct the interpolation between the
key frames. Under a fixed rate approach, users only had to
watch the video once, increasing efficiency by 33 %. We
found similar results for VIRAT: users had difficulty esti-
mating optimal keyframes for cars which can move nonlin-
early due to subtle accelerations. On average, users were
17 % faster when labeling with fixed-rate key frames. The
basketball clip displayed the least improvement (with fixed
rate saving 4 %). Since the motion was fast, confusing, and
nonlinear, annotators would annotate frequently, essentially
resorting to a fixed-rate keyframe schedule even in the user-
defined experiment. For example, Subject B annotated every
frame (taking 75 minutes) despite demonstrating an under-
standing of interpolation on the other videos. He was among
the fastest workers on every video except basketball. We still
found that workers preferred the fixed rate key frames since
the pausing was automatic. Our study demonstrates that de-
spite the flexibility of user defined key frames, a fixed rate
schedule is more efficient. The overhead of excess annota-
tions with fixed rate is offset by the cost of repeatedly watch-
ing the video with a user defined schedule.

3.3 Multiple Object Annotation

A significant annotation burden is labeling a video with pos-
sibly hundreds of objects maneuvering chaotically through-

Fig. 4 Our user study demonstrates that our interface can efficiently
label the skeleton of a person even in complex videos by labeling one
joint at a time

out a scene, such as in Fig. 4. Some objects may be moving
independently (such as cars and people), while other objects
may be strongly dependent on each other (such as the joints
of a person). Since we want a dense labeling, we must deter-
mine the most efficient method to label every object under
both conditions.

All-objects: A common approach is to annotate every ob-
ject at once. In this method, the user annotates all of the
objects in the first frame, advances to the next key frame,
updates all of the annotations, and repeats this process for
the entire video. This approach allows the user to watch the
video only once since when a frame is labeled, the user never
needs to return to it. If the user is able to able to observe the
motion of every object in a video as it plays, then labeling
every object simultaneously may save time. Indeed, annota-
tors always initially prefer this dense labeling strategy since
it seems to save effort.
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Table 2 A comparison of annotation time on labeling one object at a
time, objects in logical groups, or all objects at once. Though almost
all existing annotation systems are designed for labeling all object of
interest simultaneously, we find that it is much more efficient to label
objects one at a time. We asked a small group of our best MTurk work-
ers to label the joints of people in Fig. 2a and the players in Fig. 2b

under all annotation modes. The second number in each column is the
ratio compared to annotating one object at a time. All times are in sec-
onds. Averages are arithmetic mean for times and geometric mean for
ratios. A dash means the user declared it to be impossible or gave up;
hence many users even refused to label all objects at once

Subject Human Joints Basketball Preferred Order

One Group All One Group All

A 1639 1.00 1763 1.07 – – 476 1.00 358 0.75 253 0.53 One OGA

B 2071 1.00 2100 1.01 2440 1.17 1382 1.00 1618 1.17 2403 1.73 One AOG

C 1867 1.00 2106 1.12 – – 681 1.00 813 1.19 599 0.87 One GAO

D 2399 1.00 – – – – 494 1.00 448 0.91 960 1.94 One AOG

Mean 1994 1.00 1989 1.07 2440 1.17 759 1.00 809 0.99 1085 1.12

Single-objects: An alternative method is to require work-
ers to only annotate one object at a time. The user would
label a single object for its lifetime, then return to the begin-
ning of the video to annotate the next object. This approach
would require the user to watch the video once for each
object. Many researchers dismiss single object labeling be-
cause it seems wasteful. However, we hypothesize that, for
videos with many objects, it may be more efficient since it
avoids confounding the user with the simultaneous tracking
of multiple objects.

Groups of objects: As a compromise, a hybrid approach
is to label objects by groups. Instead of annotating all ob-
jects or just one object, users can label all objects in a se-
mantic group. For example, friends walking down the street
often are in close proximity and maintain similar velocities.
In this method, the user would annotate each person in one
group first, rewind the video, and annotate people in the next
group. Another example of this scenario is the labeling of
human body parts. Each body part is treated as an object,
and parts belonging to the same person form natural groups.

User-study results: Our user study reveals that annotating
one object at a time is not only superior, but also strongly
preferred by MTurk workers. Our results are summarized in
Table 2. We asked workers to annotate both the players in
the basketball game in Fig. 2b, as well as the joints (e.g.,
hands, feet, elbows, etc.) of the people in the scripted video
clip from Fig. 2a. Although person joints may appear to be
a prime candidate for grouping since they are physically de-
pendent on each other (when the hand moves, so must the
elbow), our results strongly suggest the opposite: annotat-
ing one object/body-part at a time is not only more efficient,
but it also preferred by the users. Some users even refused
to complete the study if they were required to annotate in
groups.

Impact of results: When conducting our user studies in
a controlled environment, we discovered new users always
initially incorrectly annotated in a sub-optimal grouping

strategy by attempting to label every object at once. Some
users would eventually realize that this strategy was poor,
but the thought of making multiple passes through the video
did not occur to most. For those that did learn, they resorted
to annotating in groups. Only rarely and after frequent use
of our system did users eventually converge to labeling one
object at a time. This reveals that users would benefit from
explicit instructions guiding them to a single-object strategy
immediately, or moreover, a restricted interface that forces
them to label single objects at a time.

3.4 Maintaining Track Identity Across Frames

A common mistake among annotators is to confuse the iden-
tity of an object between frames. This failure results in large
errors because two tracks will swap. For example, the bas-
ketball players all look similar; they are only distinguished
by the number on their uniform, but the low resolution na-
ture of the video makes the number unreadable. Conse-
quently, users often switch the identity of a basketball player
when the motion becomes confusing. We wish to design our
interface to minimize this risk.

Video Playback: We found human annotators heavily rely
on the motion of objects in order to correctly decode the
scene. In early versions of our tool, workers were only
shown key frames and could not play the video. While this
approach would be fast since the worker only needs to an-
notate static images, maintaining track identity was impos-
sible for the basketball game and barely feasible for simpler
videos. The local appearance of an object is necessary but
not sufficient to maintain object identity across frames. The
user must watch the video play in order to correctly track.
We believe this is the case because a large portion of the
human ability to track objects is by following the changes
between frames. Upon this discovery, we made the ability to
play the video an integral component of our user interface.
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Fig. 5 Maintaining track identity between frames can be difficult. By
providing a drop down tooltip for each object that summarizes its iden-
tity, workers can reliably keep the box on the same object. The tooltip

plays a slideshow of the key frames already annotated for that object,
allowing the user to “see into time” while keeping the playhead on the
frame of interest

Spacetime Tooltip: Despite the playback ability, users
would still frequently become confused about the identity
of an object from the previous key frame. In our user stud-
ies, we observed that users often forget which object they
were originally tracking when the motion is complex or un-
predictable. Users would then have to watch the video mul-
tiple times as they attempted to decode the motion. To pre-
vent this frequent and unnecessary overhead, we now dis-
play a small tooltip, shown in Fig. 5, next to each object
that reminds the user of the tracked object’s appearance and
motion. Upon clicking on a bounding box, a movie sum-
marizing the object and its previous annotations will play.
This tooltip allows the user to quickly play through the video
without moving the playhead. Since the tooltip movie skips
most frames and plays at an accelerated frame rate, the user
is able to effortlessly visualize the trajectory and appearance
of the object, thereby giving the user access to history of the
object without modifying the state of the current interface.
We found users were enthusiastic with the addition of this
feature and adopted its use upon discovery.

3.5 Attributes and Visibility

In addition to labeling the trajectory of objects, we also wish
to annotate binary temporal attributes about the object. For
example, at any given frame, we may wish to know whether
a person is walking or running, their activity, whether they
are occluded, or if they are visible in the frame. In order
to obtain these labels, we display check boxes next to the
object that the user can mark at key frames. Similar to spa-
tial annotation, frame-by-frame labeling is inefficient, so we
must develop an appropriate interpolation scheme for binary
attributes.

For both spatial and attribute annotations, we must dis-
tinguish between three types of frames: positive annota-
tions (the user explicitly indicates that this object is in
state X), negative annotations (the user indicates that it is

not in state X), and lack of annotations (the state is inter-
polated/extrapolated). If the user does not explicitly label a
frame, he may agree with the interpolation or he may be
waiting for a more opportune moment to change its label.
Our user interface must be able to distinguish between these
inherently ambiguous cases.

Timeline Independence: Attribute key frames must be
independent of spatial annotations. If the user adjusts the
bounding box, the user does not necessarily agree with the
attribute labeling. From the feedback during our user stud-
ies, we found that users preferred to annotate objects first
spatially and attributes second. The cognitive effort required
to simultaneously annotate both a bounding box and its at-
tributes was too taxing. Consequently, each attribute should
have its own timeline, allowing the worker to make one pass
for each attribute and one pass for bounding boxes.

Interpolation: When the user seeks to a frame, we pre-
dict a binary label for each attribute. We found a simple
yet effective approach is to assume the attribute label has
the same label as the immediate keyframe previous in time.
This strategy works well for attributes that describe the ob-
jects appearance as well as whether the object is inside the
view frame.

3.6 Constrained Interface

We believe our interface is successful because we limit the
number of available choices and constrain the worker to a
closed world. Work in psychology and human-computer in-
teraction reveals that minimizing interruptions and choices
can significantly reduce user anxiety and increase efficiency
(Schwartz 2005; Bailey and Konstan 2006; Mark et al.
2005). In our interface, we follow similar principles. For ex-
ample, users must annotate on fixed key frames, the types
of objects are predefined, and we only support rectangu-
lar bounding boxes. We have observed that annotators are
tempted to try to do too much at once. Users instinctively
feel that annotation is more efficient if they do everything
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simultaneously, yet our user studies demonstrate that this
cognitively overloads the user and, contrary to our instinct,
slows us down. Instead, a restricted interface allows users to
efficiently annotate: by only making one decision at a time,
we are able to more efficiently annotate video.

Precision-Cost Trade-off : A more flexible interface, such
as LabelMe video (Yuen et al. 2009), might allow more pow-
erful annotations, but at the expense of increased annotation
effort. In contrast to our framework, LabelMe video sup-
ports user defined key frames, free text entry for the type
of objects, arbitrary polygons, and the ability to link ob-
jects together by semantic events. These features all allow
more rich annotations. If we desire a rich and detailed an-
notation corpus, then the flexibility is necessary. But, if we
can accept lower precision annotations, then restricting the
interface will result in a significant savings of time and ef-
fort, as our user studies have demonstrated. As we wish to
deploy our system on Amazon’s Mechanical Turk with mas-
sive data sets, saving the annotators time is highly desirable
since it reduces our costs.

4 Mechanical Turk

We ran our annotation system within Amazon Mechanical
Turk (MTurk), an online labor marketplace that allows em-
ployers to easily hire workers to complete tasks. MTurk
is ideal for jobs that are difficult for computers but trivial
for humans. As employers, we create Human Intelligence
Tasks (HITs) and set prices for each task before posting to
the MTurk servers. Workers around the world, as in Fig. 6,
then browse offered jobs and accept those that interest them.
Task completion is not guaranteed and is the result of typ-
ical market dynamics (Ross et al. 2010). Upon validation
of completed work, Amazon releases escrowed payments to
the workers.

In the remaining sections, we describe aspects of our sys-
tem that relate to crowdsourcing on MTurk. There are two

Fig. 6 Where are the workers? Most jobs for VIRAT were completed
from workers in India, Macedonia and the United States

main challenges: a) How do we split up a video annotation
job into small, distributed tasks for individual workers? and
b) How do we ensure high-quality results? We begin with
the former, but spend most of our efforts addressing the cru-
cial latter question.

4.1 Shot-Based Annotation

We first break every video up into many small, overlapping
segments, typically of about ten seconds each. If the video
consists of multiple shots, we use a standard scene recogni-
tion algorithm (Oliva and Torralba 2001) to create segments
along scene boundaries. We then publish each segment onto
MTurk and pay a worker to annotate every object in a seg-
ment using our interface previously described.

After all segments have been labeled, we must stitch the
annotations between segments to create continuous paths
that span the original video. Since each segment overlaps an-
other (typically by a second), we can use these redundant an-
notations to correspond tracks with each other. We establish
correspondence between the set of tracks from segment S

and the adjacent segment T . We map every path i ∈ S to an-
other path j ∈ T using the mapping function f . By search-
ing for the f that minimizes the assignment costs C(i, j),
we can compute an optimal assignment between segments:

min
f

∑

i∈S

C
(
i, f (i)

)
where f : S → T (1)

Equation (1) is equivalent to a minimum-weight bipartite
matching problem, which we solve using the Hungarian al-
gorithm (Munkres 1957). Without loss of generality, let the
overlap region between paths to be on the interval 0 ≤ t ≤ T .
Let it and jt be the bounding box at time t for each path re-
spectively. We define the cost of assigning path i to j to be
low when they sufficiently overlap for a majority of frames:

C(i, j) =
T∑

t=0

⎧
⎪⎨

⎪⎩

0 if both are visible and overlap

0 if both are not visible

1 otherwise

(2)

Leftover tracks are matched to dummy nodes with a fixed
cost. We then use the pointers f to link tracks between shots.
This approach works well, although it may require some
manual cleanup when objects are small or there are mistakes
in the annotations.

4.2 Macro vs Micro Tasks

A common principle in crowdsourcing is to design tasks that
are micro, i.e. the worker can solve them quickly, easily, and
effortlessly. This conventional wisdom stems from observa-
tions that workers often solve HITs when they are bored,
do not want to exert significant cognitive effort, and lack
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time for involved tasks. In early versions of our tool, we
followed this principle and divided work in order to mini-
mize the effort required by each individual worker. In these
experiments, we instructed a worker to annotate only one
object for an entire segment. After completing the annota-
tion, a different worker would annotate another object. To
prevent duplicate annotations on the same object, workers
saw previous annotations from other users. While this pro-
tocol encourages rapid participation from many workers, we
discovered that micro-tasks are not suitable for high quality
video annotation.

The problem with micro tasks: The crucial flaw with the
given approach is that workers need to rely on accurate and
unambiguous annotations by previous workers. We found
that small errors propagated and compounded themselves.
For example, it may be unclear when a particular track be-
gins or ends due to partial occlusion. A new worker may
begin annotating an unannotated object, only to discover in
a few frames that a previous worker annotated the same ob-
ject with a slightly late starting frame. At this point, they
should restart according to our directions, but most work-
ers feel compelled to continue the annotation to minimize
wasted effort. Because workers often look to previous an-
notations as a guide, such mistakes are mimicked and com-
pounded across subsequent work.

Macro tasks: Rather, video annotation requires macro
tasks in order to obtain high quality labels. Instead of an-
notating one object per task, the worker should take “own-
ership” of a video segment and annotate every object. The
cognitive effort expended into visually decoding a scene is
wasted if each object is annotated by a different worker. Al-
though our user studies demonstrate that workers should an-
notate one object a time, we found that the same worker
must annotate every object in the video. By granting own-
ership of an entire segment to only one worker, we are able
to distribute small errors independently across multiple seg-
ments in a video, rather than compound small errors within
a segment, resulting in higher quality annotations. Figure 7
demonstrates that there are workers who are willing to work
on tasks that require hours of attention.

4.3 Discovering Good Workers

Video annotation is hard: In this section, we outline our pro-
tocol for generating high-quality video annotations. Com-
pared to image annotation, video annotation is a surprisingly
difficult task for a variety of reasons. Firstly, object tracks
can be ambiguous in both the spatial and temporal domains.
For example, it is hard to resolve starting and ending frames
for objects undergoing partial occlusions. Secondly, anno-
tation can be tedious. When annotating a crowd of people
walking in low resolution, it can be difficult to avoid swap-
ping track identities. And finally, some workers have dif-
ficulty understanding the concept of object continuity with

Fig. 7 How long did each worker spend annotating? Both plots are
for the VIRAT video data set. The left shows labeling times for an
actual annotation session after workers had passed our quality control
measure. The right shows worker times when they were learning how
to annotate video and attempting to pass our quality control measures.
For a ten second clip, most workers took up to an hour to annotate
every object in VIRAT. The total annotation time for VIRAT was 8
man months for 27 hours of video

respect to an annotation interface. Users sometimes instanti-
ate a new track when an object reappears from an occlusion,
or in the extreme case, some users marked a new track for
every single frame. Because video annotation is hard, we
found that most workers, despite accepting the task, do not
have the necessary patience or skill to be accurate annota-
tors.

The good, the bad, and the ugly: The typical approach for
quality control in crowdsourced scenarios is to self-validate
by asking for multiple annotations for the same data point.
The underlying assumption is that most workers are hon-
est, and that a small number of dishonest workers that can
be identified out through validation. As we argued above,
many if not most honest workers will also be poor annota-
tors, mandating the need for a refined strategy for quality
control. To that end, we classify workers into three types,
and describe methods for identifying each: good workers
who are honest and skilled; bad workers who are honest but
unskilled; and ugly workers who are dishonest and cheaters.
We find that it is crucial to eliminate both bad and ugly
workers for high-quality crowdsourced video annotation.

Eliminating the bad: When a new worker visits our task,
we silently redirect them to a “gold standard” annotation
challenge shown in Fig. 9. Since we secretly know the
ground truth annotation, we can automatically evaluate their
performance to check if they are skilled annotators. We se-
lect a different gold standard video for each data set that is
representative of the type of problems the human annotator
must overcome (e.g., frequent occlusions, camera motion, or
fast motion). Given a set of ground truth tracks G and candi-
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Fig. 8 How many jobs did each worker complete? On the left, we
show how many jobs each worker completed on the 200,000 frame
basketball game without any quality control. On the right, we show
the number of jobs completed per worker across the 3,000,000 frame
VIRAT data set with after a quality control evaluation test. Notice that
the basketball video is an order of magnitude shorter in length, yet its
protocol required an order of magnitude more workers. Our quality as-
surance protocol eliminates the long tail of workers only attempting a
few jobs. By identifying the workers that are “good” at video annota-
tion, we are able to obtain very high quality labels

Fig. 9 The gold standard video a worker must label to demonstrate
their annotation ability before they are allowed to submit work for
VIRAT. The video is slightly more challenging than the majority of
VIRAT in order to select the best MTurk workers

date paths S, we establish correspondence using the assign-
ment problem in Eq. (1). If G and S do not sufficiently agree
under the best matching, then the worker fails the challenge,
but is allowed to try again an unlimited number of times.
Because interested but misguided “bad” workers may put
forth considerable effort and still fail, we prevent them from
submitting work, which never sets them up for a rejection.
Once the worker passes the gold standard challenge, they are
given access to the true, unlabeled data set. Crucially, work-
ers are never informed that they have been evaluated by a
gold standard. Figure 8 shows that most of the long-tailed
distribution of workers falls under the “bad” category, and
are eliminated.

Eliminating the ugly: The above quality control protocol
will successfully separate the good from the bad, but it does
not ward off the “ugly” worker. An adversarial worker might
provide a perfect gold standard annotation then revert to low
quality, automated submissions completed by a robot. While
contemporary crowdsourcing employs thousands of work-
ers, our gold standard challenge only accepts hundreds of
workers. This means that rather than verifying work, we can
verify the worker. We manually verify each worker by ran-
domly sampling and viewing a couple of jobs, a process that
took less than half an hour in total. In practice, we discov-
ered one “ugly” worker who consistently submitted gamed
annotations. We blocked him from working on our task and
recreated his jobs. In essence, our validation protocol allows
us to use Turk not directly as a crowdsourced platform, but
as a marketplace to identify reliable and skilled annotators,
which we found crucial to providing high-quality annota-
tions.

Possible limitations: One limitation of eliminating work-
ers is that throughput may decrease. Most of the time, a few
workers perform a majority of the tasks, and many work-
ers perform a few or a single task. Because “bad” workers
tend to lie on the tail of the distribution in Fig. 8, we are still
able to take advantage of a core group of validated workers
who performed hundreds or thousands of jobs. We exper-
imentally have noticed that our jobs have a long warm up
time as our system identifies good workers, but once work-
ers have been matched to our jobs, completion is rapid. An
unexpected benefit was consumer loyalty; validated workers
were eager for any additional work, and also strongly sup-
ported us on bulletin boards.

4.4 Worker Compensation

Payout: In a macro-task protocol, videos containing more
objects are more difficult to label. To compensate work-
ers proportionally with video difficulty, we paid workers a
fixed rate per object. For example, on videos of intermedi-
ate difficulty (such as VIRAT), we paid 5 cents per object
in a 10 second shot, shown in Fig. 10. For more difficult
videos like the basketball game, we paid 15 cents per ob-
ject, while for extremely difficult videos such as the bas-
ketball, we paid 50 cents. We also paid the worker a small
completion bonus, typically a few cents, if they successfully
annotated every object. Since we do not know the true num-
ber of objects in each video, we always paid the completion
bonus regardless of the number of objects annotated. This
payout scheme assumes that we trust the worker to not over-
label hallucinated objects; we found that was reasonable for
“good” workers that passed our gold-standard validation. In
general, we found this payment schedule to produce high
quality, dense annotations. If we paid independently of the
number of objects, workers will only annotate a few objects
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Fig. 10 How much do we spend on each clip? At $0.05 per object,
most VIRAT video clips cost between $1 and $2, resulting in a cumu-
lative cost of tens of thousands of dollars. Since video annotation is a
skilled task, we must hire expert workers

since there is no incentive to provide a dense labeling. Sim-
ilarly, if we do not include the completion bonus, workers
will only annotate the easy objects. By including both the
completion bonus and the per object pay, workers will max-
imize their pay and provide dense annotations.

Rejection: As video annotation requires specialized skill,
we must attract the best workers. With the rise of online
communities that advocate for the workers such as TurkOp-
ticon.org and TurkerNation.com, maintaining a strong repu-
tation amongst the workers is crucial. When a worker com-
pletes a task for a requester, they can report their experiences
to these communities in an effort to warn others against un-
fair practices. In early versions of our tool, we automatically
rejected unsatisfactory work. Since most workers cannot an-
notate video sufficiently, most work was rejected, ultimately
resulting in negative ratings that tarnished our reputation.
Once we received enough negative press, workers were so
scared of a rejection that we inadvertently turned away the
best workers. Indeed, MTurk workers take a single rejection
harshly. One worker even threatened to involve the IRB over
his rejection:

“I feel strongly about my 20 cents. . . I expect to [sic]
paid in the next 24 hours or I WILL let the IRB know
ASAP.”—an Ivy league student

While this worker was very upset about twenty cents, some
workers reported that they care more about their personal
statistics rather than the pay. MTurk records how many jobs
each worker has completed and their acceptance ratio. These
statistics are paramount:

“I am fine if you do not want to pay me for these, but
rejecting spoils my qualifications.”—MTurk worker

Fig. 11 For a subset of jobs, we allowed workers to donate their pay
to the Untied Nation’s World Food Programme. Workers could choose
to donate none, half, or all of their pay. A total of 65 workers donated
2,000 cups of food (worth $500), demonstrating its viability

We now accept every task regardless of its quality. A strong
reputation among workers is worth the overhead cost. Notice
that our gold standard challenge prevents bad workers from
entering our system and setting themselves up for rejection;
since we do not allow poor quality workers to even enter
our system, we cannot hurt their statistics. Moreover, we
use this paranoia to our advantage by threatening to reject
assignments. We inform workers that we reserve the right to
reject poor work and this is effective at motivating workers
to produce high quality labels.

Motivational Feedback: We found giving our workers au-
tomatically generated motivational feedback was effective at
encouraging workers to continue annotating. As we argued
above, workers are cautious to work on new jobs due to fear
of rejection. When we accept an assignment, we also gen-
erate a small string (e.g., “Keep up the fantastic work!”) to
provide feedback. Workers reported that they were thankful
for this positive confirmation:

“I really appreciate the positive Feedback. . . its nice
to know I’m doing what you need.”—MTurk worker

This feedback encouraged workers to continue annotating
for us because they felt confident that their future work
would be accepted.

Charity Incentive: As a further experiment analyzing the
motivation of a worker, we allowed workers to forgo com-
pensation and instead donate their pay towards charity. Upon
completing a task, workers were given an option to either
donate none, half, or all of their pay to the United Nation’s
World Food Programme. These results are summarized in
Fig. 11. Intriguingly, our results suggest that workers are
willing to not receive a direct payment for their services, so
long as they see their time is valued as evidenced by the do-
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nation amount. We hypothesized that we may also observe
a higher quality output for work with donated funds, as this
seemingly would disincentivize an “ugly” worker looking
to game the system. However, we did not see an increase in
accuracy, probably due to the fact that our aggressive vali-
dation protocol already eliminated the “ugly” workers. We
believe that further exploration of charity or other economic
incentives may produce higher quality work.

5 Interpolation

Vital to our analysis is the ability to properly interpolate be-
tween a sparse set of annotations. Our labeling tool requests
that a worker labels the enclosing bounding box of an en-
tity every T frames. Offline, we interpolate the object path
between these key frames using a variety of algorithms. Be-
cause this is done offline, we can afford to use computation-
ally expensive schemes. We define b to be the coordinates
of a bounding box:

b = [
x1 x2 y1 y2

]T
(3)

We write bt for the bounding box coordinate of an entity at
time t . Without loss of generality, let us define the keyframe
times to be time 0 and time T . We define the interpolation
problem to be: Given b0 and bT , estimate bt for 0 < t < T .

5.1 Linear Interpolation

The simplest approach is linear interpolation:

blin
t =

(
t

T

)
b0 +

(
T − t

T

)
bT for 0 ≤ t ≤ T (4)

Yuen et al. (2009) makes the astute point that constant ve-
locity in 3D does not project to constant velocity in 2D due
to perspective effects. Assuming the tracked entity is planar,
they describe a homography-preserving shape interpolation
scheme that correctly models perspective projection. How-
ever, we found simpler linear interpolation to work well for
many common scenes where there does not exhibit much
depth variation.

Both of these interpolation algorithms are very efficient
since they avoid the need to process any pixel data. However,
both assume constant velocity which clearly does not hold
for many entities (Fig. 12). In the remainder of this section,
we describe a dynamic programming based interpolation al-
gorithm that attempts to track the location of the entity given
the constraints that the track must start at b0 and end at bT .

5.2 Discriminative Object Templates

To score a putative interpolation path, we need a visual
model of the tracked object. We use all the annotated

Fig. 12 Nonlinear motion requires more sophisticated interpolation
strategies for estimating entity position given the end locations. We
employ a tracker in order to find the actual path through visual analysis

keyframes within a single video shot to build such a model.
Assume N such keyframes exist, which in turn yield N

bounding boxes which contain the entity of interest. Our
first approach was to construct an average pixel-based tem-
plate, and score it with sum-of-squared differences (SSD) or
normalized correlation. We also experimented with more so-
phisticated templates built on histogram of oriented (HOG)
(Dalal and Triggs 2005) features. We found poor results with
both.

We believe the suboptimal results arose from the fact
that such templates are not designed to find objects in the
cluttered backgrounds that we encountered. To compensate
for this fact, we extract an extremely large set of “negative”
bounding boxes collected from the N keyframes, making
sure that they do not overlap the entity of interest in those
frames. We then attempted to score a putative bounding
box by competing an object template with an average back-
ground template. We again found poor results, this time due
to the fact that our video backgrounds are complex and are
poorly modeled with an average template.

Finally, we converged on the approach of learning a dis-
criminative classifier trained to produce high scores on pos-
itive bounding boxes and low scores on the negatives. For
each bounding box bn we compute a feature descriptor com-
posed of HOG and color features:

φn(bn) =
[

HOG
RGB

]
(5)

where RGB ∈ R
3+6 consists of the 3 means and 6 covari-

ances of the three color channels computed from all pixels in
window bn. When trained with a linear discriminative clas-
sifier, these color features are able to learn a quadratic deci-
sion boundary in RGB-space. Before extracting features, we
resize the image patch at bn to the “canonical” object size es-
timated from the average of the N labeled bounding boxes.
Given a collection of features along with labels yn ∈ {−1,1}
identifying them as positives or negatives, we learn a lin-
ear SVM weight vector w that minimizes the following loss
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function:

w∗ = argmin
w

1

2
‖w‖2 + C

N∑

n=1

max
(
0,1 − ynw · φn(bn)

)
(6)

We use liblinear (Fan et al. 2008), which appears to be
fastest linear SVM solver available. For typical size prob-
lems, training took a few seconds.

5.3 Constrained Tracking

We write the constrained endpoints given by the key frames
as b∗

0 and b∗
T . We wish to use the template w to construct

a low-cost path b0:T = {b0 · · ·bT } subject to the constraints
that b0 = b∗

0 and bT = b∗
T . We score a path by its smoothness

and the local classifier scores:

argmin
b1:T

T∑

t=1

Ut(bt ) + P(bt , bt−1) (7)

s.t. b0 = b∗
0 and bT = b∗

T (8)

We define the unary cost Ut to the SVM score truncated
by α1 so as to reduce the penalty during an occlusion:

Ut(bt ) = min
(−w · φt (bt ), α1

) + α2
∥∥bt − blin

t

∥∥2 (9)

We introduce a prior on linear interpolation to allow our
tracker to gracefully degrade to linear interpolation when
the path becomes extremely difficult. In practice, α2 is very
small and often zero. We note that we are able to efficiently
compute the dot product w · φt (bt ) using convolution ker-
nels capturing both the HOG template and the weights for
the color features.

We then define the pairwise cost to be proportional to the
change in position:

P(bt , bt−1) = α3‖bt − bt−1‖2 (10)

Note that the constraints in (8) can be removed simply
re-defining the local costs to be:

U0(b0) = inf for b0 �= b∗
0 (11)

UT (bT ) = inf for bT �= b∗
T (12)

5.4 Efficient Optimization

Given K candidate bounding boxes in a frame, a naive ap-
proach for computing the minimum cost path would take
time O(KT ). It is well known that one can use dynamic
programming to solve the above problem in O(T K2) by the
following recursion (Bellman 1956):

costt (bt ) = Ut(bt ) + min
bt−1

[
costt−1(bt−1) + P(bt , bt−1)

]

(13)

where costt (bt ) represents the cost of the best path from t =
0 to bt . We initialize cost0(b0) = U0(b0). By keeping track
of the argmin, one can reconstruct the minimum cost path
ending at any node.

Note that the above recursion can be written as a min-
convolution (Felzenszwalb and Huttenlocher 2004), allow-
ing us to compute the optimum in O(T K) using distance-
transform speed-ups:

costt (bt ) = U(bt ) + min
bt−1

[
costt−1(bt−1) + α2‖bt − bt−1‖2]

(14)

6 Results

The computer vision community has validated the power of
our public online labeling framework by collectively plac-
ing thousands of videos on MTurk. Figure 14 shows a small
sample of the types of videos that our system has annotated.
Our system is robust to many annotation problems—such
as frequent occlusions, motion blur, drastic camera motion,
variations in pose, and cluttered backgrounds—and can an-
notate videos of any difficulty. These experiments demon-
strate that our framework will successfully scale to building
massive video data sets.

In order to conduct our study on the economics of video
annotation, we selected four different data sets of varying
difficulty shown in Fig. 13. First, we examine “easy” videos
of people performing athletic drills where they are eas-
ily distinguished from the background. Second, we look at
“medium” videos from the VIRAT challenge video surveil-
lance data set. VIRAT is unique for its enormous size of over
three million frames and up to hundreds of annotated objects
in each frame. Third, we look at a “difficult” task of anno-
tating basketball players who tend to undergo a fair num-
ber of occlusions in cluttered backgrounds (as in Fig. 1 and
Fig. 13d) throughout a two hundred thousand frame video.
Finally, we consider the task of annotating “very difficult”
entities such as a basketball (as in Fig. 12), which is hard
to track due to frequent occlusions by players and the exis-
tence of large amounts of motion blur relative to its small
image size. We use these data sets to examine cost trade-
offs between automation and manual labeling as a function
of the difficulty of the data. Our labeled basketball video
data is unique for its size and complexity, and we have made
it available to the community for further research on activity
analysis.

We deploy our previously described user interface to
have workers annotate our video data sets on MTurk. We
then use these dense sets of annotations as ground truth.
We hold out different intervals of ground truth in order to
determine how well the tracking and interpolation meth-
ods predict the missing annotations. We score our predic-
tions with the same criteria as the PASCAL challenge:
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Fig. 13 Some of the data sets that we have annotated using VATIC. Despite the varying difficulty in videos, annotation quality is very good. All
annotations shown are from MTurk workers

a prediction must overlap with the actual annotation by at
least 50 % to be considered a detection (Everingham et al.
2010).

6.1 Diminishing Returns

We first confirm our hypothesis that the “Turk philoso-
phy” (human computation is cheap and subsumes automated
methods) does not hold for video because it is wasteful
for users to annotate every frame. Figure 15 shows a di-
minishing returns property in which increased human la-
beling (x-axis) results in smaller and smaller reductions
in error rates (y-axis). Moreover, the rate of the diminish-
ing is affected both by the difficulty of the video (easy,
medium and difficult) and the choice of interpolation al-
gorithm. For medium videos, we can achieve 10 % error
with a user annotation rate of 0.001 clicks per frame or
1,000 frames between clicks. For medium-difficultly videos,
we require at least 0.05 clicks per frame regardless of the
mode of interpolation. Finally, for difficult videos, we need

0.2 clicks per frame for the best accuracy. Our results sug-
gest that interpolation of any kind can exploit the redun-
dancy in video to reduce annotation effort by an order of
magnitude compared to a naive, “brute-force” MTurk ap-
proach.

6.2 CPU vs Human Cost

As part of our best-practice analysis, we would like to an-
swer the question: Given $X, how should one divide/manage
human effort versus CPU effort (required to interpolate an-
notations) so as to maximize track accuracy? To do so, we
make three simplifying assumptions. First, we assume that
linear interpolation is virtually free in terms of CPU usage
since it requires a minimal amount of floating point op-
erations compared to our tracking-based interpolation. We
next assume that tracking-based interpolation will require a
fixed amount computation regardless of the annotation fre-
quency. This is reasonable because the length of an inter-
polated interval and the number of intervals to interpolate
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Fig. 14 Examples of the videos that the community has annotated us-
ing VATIC. Our system is robust to common annotation problems and
can scale to most types of video (Anonymous 2012; Demiröz et al.

2012; Liu and Lazebnik 2011; Aydemir et al. 2012; Chen et al. 2011;
Oh 2011; Pirsiavash and Ramanan 2012)

scale inversely with each other. This means that for a fixed
length-video, tracking-based interpolation will cost some A

amount of dollars regardless of the annotation frequency. Fi-
nally, we assume that we can generate interpolation algo-

rithms that incur α · A dollars for CPU usage by randomly

flipping a α-biased coin to determine if a particular inter-

val should be interpolated linearly or with a tracking algo-

rithm.
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Fig. 15 Performance of dynamic programming and 2D linear interpo-
lation on easy, medium, difficult, and very-difficult data sets. Dynamic
programming excels when features are easily extracted, such as in ath-

letic drills or VIRAT. But, dynamic programming performs equally
well as linear interpolation when the object is highly occluded (such as
a basketball)

We use rates from Amazon’s Elastic Compute Cloud

(EC2) platform to compute a monetized CPU cost. On av-

erage, our tracking algorithm takes 0.12 seconds per frame

per object on a single core Intel Xeon 2.67 GHz processor.

Amazon charges US$0.085 per hour (effective) for a com-

parable computer. The two hour basketball game will take

40 hours to process all the players and referees with total

cost of US$3.40. We then use our worker compensation rates

from MTurk to compute the cost of paying a human to la-

bel every frame. We paid workers US$0.15 per basketball

player to annotate 300 frames. On average, a worker an-

notated every 12 frames. A frame-by-frame labeling would

cost us US$5,947. We do a similar analysis for the athletic

drills, VIRAT, and the basketball. We finally plot the error-

by-cost graphs in Fig. 16.

6.3 Performance Cost Trade-off

We now consider our motivating question: how should one
divide human effort versus CPU effort so as to maximize
track accuracy given a X$? A fixed dollar amount can be
spent only on human annotations, purely on CPU, or some
combination. We express this combination as a diagonal
line in the ground plane of the 3D plot in Fig. 16. We plot
the tracking accuracy as a function of this combination for
different X$ amounts. We describe the trade-off further in
Fig. 17.

We note that researchers often desire zero error in their
dataset: what is the cost for a perfect annotation? Figure 17
reveals that we can obtain nearly zero error on athletic drills
for $50 and on VIRAT for $10,000 by running a tracking
algorithm. However, for difficult videos, the tracking algo-
rithm struggles and linear interpolation is sufficient for a
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Fig. 16 Cost trade-off between human effort and CPU cycles. As the total cost increases, performance will improve. Cost axes are in dollars. Blue
and red indicate low and high error respectively

high quality annotation allowing the basketball players to
be annotated for $350 and the basketball for $200. Clearly,
as tracking algorithms improve, the cost of a perfection an-
notation will decrease.

6.4 Interactive Evaluation Metric

Our motivation so far has been the use of crowdsource
marketplaces as a cost-effective labeling tool. We argue
that crowdsourcing also provides an interesting platform
research on interactive vision. It is clear that the state-
of-the-art techniques are unable to automatically interpret
complex visual phenomena (yet). We hypothesize that al-
lowing a modest amount of human intervention will al-

low us to successfully deploy vision algorithms now, al-
lowing us to incrementally address and quantify progress
for difficult scenarios. Traditional tracking metrics, such
as time-to-failure, do not reveal the whole story: an ap-
proach may only need one more annotation in order to
produce a perfect track. Indeed, the mere complexity of
the data we analyze might be dwarfing our perception
of progress in computer vision. To overcome this issue,
we propose to fairly evaluate algorithms by how much
they reduce annotation effort. We can quantify the per-
formance of an algorithm by its economics: how much
does this algorithm reduce the error for a fixed price
point?
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Fig. 17 We show the cost trade-off between human effort and CPU
cycles for different dollar amounts on different videos. In the “easy”
field-drill video (a) and “medium” VIRAT data set (b), the optimal
trade-off is to maximize CPU usage for a fixed dollar amount. Even
though VIRAT has a significant amount of linear motion and station-
ary cars, our tracker is fast enough that it is still economical to exe-
cute. In the “very-difficult” ball footage (d), the optimal trade-off is to

minimize CPU usage for a fixed dollar amount, essentially reducing to
linear interpolation. Our most interesting tradeoff occurs for the “dif-
ficult” video of basketball players and referees (c). At current market
prices, if nearly zero error is required, then linear interpolation is cost
effective. But, if we can accept some error in our annotations, then run-
ning the dynamic programming based tracker is the most economical
interpolation scheme

To demonstrate this, we analyze how our dynamic pro-
gramming based tracker performs against other trackers.
While there are many trackers available (for a survey,
see Yilmaz et al. 2006), we will consider variations from
our method by changing which features the visual object
model employs. Figure 18 compares various aspects of our
tracker: linear interpolation versus dynamic programming,
color versus HOG descriptors, and the amount of spatial
invariance in HOG. In all cases, the time-to-failure is frac-
tions of a second, but our evaluation metric demonstrates
that trackers that process pixel data with more robust fea-
tures are, rightly so, superior. Interestingly, we show that
HOG, as introduced in Dalal and Triggs (2005), is not op-
timized for tracking. This is because parameters are tuned

for category-level invariance, but a tracking framework re-
quires only instance-level invariance. Our metric reveals
that the less spatially invariant HOG is superior for track-
ing.

Our cost-based analysis demonstrates that it pays to re-
duce the spatial invariance of HOG by computing his-
tograms over smaller neighborhoods of 4 × 4 pixels rather
than 8 × 8. To demonstrate this, we consider the cost of
annotating the basketball game with 30 % error. The cost
of executing the less invariant tracker is three times more
expensive at $10.20 (due to larger convolution kernel) for
the entire basketball game. Therefore, to obtain 30 % error
with HOG4, we must average 0.01 clicks per frame, costing
$59.47 in human labor for a combined cost of $69.67. If in-
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Fig. 18 A comparison of different trackers on a thousand frames of the
basketball players video. HOG8 refers to the original HOG descriptor
which computes bins gradient orientations over 8 × 8 pixel neighbor-
hoods. HOG4 uses smaller 4 × 4 neighborhoods, and so is less spa-
tially-invariant. Our method introduces a novel evaluation metric that
more fairly evaluates trackers, as compared to traditional metrics such
as time-to-failure. Our cost-based analysis reveals that it pays (liter-
ally!) to use smaller spatial neighborhoods, but it does not pay to use
color

stead we choose to trade computation for humans and run
the more spatially invariant HOG8 at the same error point,
we only spend $3.40 on computers but $83.25 on humans
with a cumulative cost of $86.64. In other words, HOG4
saves $17 over HOG8 on the basketball game when 30 %
error is acceptable.

7 Future Work

Clients on the world wide web are distributed by nature and
our framework would allow us to harness the unused pro-
cessing power on the worker’s computers. Instead of leav-
ing the central server to do all the tracking, the workers’
personal computers can execute the trackers for us. This ap-
proach allows us to not only buy the worker’s time, but also
some of the worker’s CPU cycles. At the time of publication,
however, running an intensive tracking algorithm is infeasi-
ble due to lacking efficiency in web browsers and JavaScript.
As adoption of new web technology grows, we hope to ex-
plore this avenue further.

Even though our user studies demonstrate that fixed rate
key frames are superior to user defined key frames, they
are still sub-optimal since the annotation frequency is fixed
per video. Instead, we should adopt an adaptive key frame
schedule that adjusts the annotation frequency depending on
the complexity of the video. If the object is stationary or eas-
ily recovered by a tracker, the annotation frequency should

automatically decrease, but when the object undergoes un-
predictable motion, the frequency must increase. We have
laid the theoretical groundwork for active learning based
video annotation in Vondrick and Ramanan (2011), but we
have not addressed the user interface issues (a crucial area
of vision often overlooked) surrounding active learning. As
we believe active learning can provide a significant improve-
ment over the results presented in this paper, we plan to in-
tegrate active learning into the system described here.

Finally, we believe that more research into compensa-
tion incentives can improve the quality of our video annota-
tion system. In this paper, we began to explore non-standard
payment schedules through our charity incentive, per-object
bonus, and completion bonuses. We believe there are other
compensation strategies—such as delayed payments with
interest or lotteries—that will separate the “good” workers
from the “bad” and “ugly.” We hope to investigate these al-
ternatives incentives in the future.

8 Conclusion

We have introduced a large scale video annotation platform
capable of economically obtaining high quality labels for
complex videos. We first built an efficient user interface for
video annotation by informing our design choices through
extensive user studies. Our experiments demonstrate, de-
spite intuition, that contemporary interfaces are sub-optimal
and that simplified, restricted interfaces can save significant
effort. We next deployed our system on Amazon’s Mechan-
ical Turk where, instead of relying on the wisdom of the
crowd, we are able to collect high quality labels by pin-
pointing a small group of expert workers who are capable
of video annotation. By never rejecting work, we have built
a relationship of trust with the workers. We then demonstrate
that tracking algorithms benefit video annotation when un-
der a constrained budget since they can exploit visual anal-
ysis to recover nonlinear paths. Our results reveal that the
“Turk philosophy” does not hold for video annotation and
computers should assist humans.

In order to reach the next generation of massive data sets,
we cannot solely rely on low-wage crowdsourced market-
places. Instead, we must also design intelligent annotation
protocols that yield high quality and economical labels. In
furthering this goal, we have presented a set of best prac-
tices, backed by three years of analysis, that shape our video
annotation platform. We hope these contributions will spur
the continued creation of massive video data sets and lead
to innovation in data driven computer vision throughout the
next decade. Indeed, data will always play a central role in
computer vision research.
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