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C o n t e n t  S h a r i n g

T he Internet is radically trans-
forming itself in response to 
new perspectives that encourage 
community and group content 
creation while pushing techno-

logical dominance to the background. This 
Web 2.0 approach drives many high-traffic 
Web sites such as YouTube, Wikipedia, and the 
news-voting site Digg. Such sites utilize modest, 
easily duplicated technological innovations but 
are market leaders because of their large, active 

community of content creators 
and consumers.

In contrast, it’s rarer to find 
sites that use passively gener-
ated content. Implicit voting 
(such as when people passively 
cast a vote for a video on You-
Tube by watching it) is the no-

table exception.
In our system, Nomatic (nomad and auto-

matic),1 we explore a way to amplify and lever-
age this passive style of content creation by fo-
cusing on status messages. These short bits of 
text are usually created by users in the context 
of small communities of people who monitor 
each other for play- or work-related distrib-
uted coordination. Status messages appear in 
instant-messaging (IM) clients as short custom-
izable phrases such as “at lunch” or “out of the 

office.” Commercial services also provide facili-
ties for communicating status without IM (for 
example, Facebook, Twitter, and Jaiku).

By simply attaching sensor data to the status 
information that users enter in IM, we can cre-
ate a rich ecosystem of context-aware applica-
tions that benefit the end user. At the most ba-
sic level, keeping status content up to date helps 
mitigate the increasing problem of interruptions 
in mobile communications, but there are many 
other potential uses of such data. To be effec-
tive, we must keep this ecosystem in balance by 
supporting the user’s ability to provide status 
information, supporting other users’ ability to 
understand that data, and effectively motivating 
both types of users to keep their status informa-
tion accurate.

Structure and Sensors
Two unique ideas make our approach to status 
messages useful for passive content generation. 
First, we focus on mobile, structured, user-
entered status updates. We’re particularly in-
terested in updates that people use to describe 
their activities when they’re engaged in spe-
cific tasks while out using laptops and phones 
instead of desktop computers. Our user inter-
faces encourage update descriptions using fields 
labeled place, activity, and other. This approach 
is compelling because it aligns with mobile us-
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ers’ existing practices,2 reflects more di-
rectly on aspects of the physical world, 
and enables algorithms to make more 
assumptions about status content than 
would otherwise be appropriate.

Second, we rely on sensors built into 
commercial-off-the-shelf mobile plat-
forms to help contextualize these status 
messages. By pairing structured status 
messages with sensor information such 
as Wi-Fi access points, ambient light 
levels, and accelerometer readings, 
it is possible to predict a user’s status 
choice. Nomatic uses machine-learn-
ing algorithms to recognize situations 
in which sensor readings are similar to 
past situations and let users quickly re-
enter those status messages later.

an ecosystem
A viable passive content-generation 
system requires an ecosystem that sup-
ports the user’s primary interest in 
status messages. To design such a sys-
tem, we built on previous research that 
identified provision and perception as 
key aspects of an effective status eco-
system;3 we then added motivation as 
a third factor. Provision draws atten-
tion to the fact that users must be able 
to easily and effectively describe their 
current status. Perception recognizes 
that other people must be able to view 
status for awareness to occur. Motiva-
tion emphasizes that for a user to keep 
status accurate, and for a computer to 
be able to interpret the status as con-
tent, it must be embedded in a needed 
and well-understood task. 

Our theoretical orientation origi-
nates from Paul Dourish’s idea of em-
bodied interaction,4 which emphasizes 
that pervasive computing is situated in 
a dynamic social and physical world 

that people are constantly renegotiat-
ing. We view status messages as digi-
tal probes into this negotiation. Rather 
than giving people a geo-tag tool and 
then making them guess about how to 
use such tags in the real world, our sys-
tem observes users as they conduct their 
everyday activities and then uses that 
information as a building block for im-
proving computational services.

Provision
Providing easy ways for users to enter 
their current status is important for 
making our status ecosystem viable. 
Most IM systems provide only two op-
tions. On one end of the spectrum, us-
ers must enter custom status messages. 
Custom status provides the most nu-
anced control over the presentation of 
a user’s context, but keeping the mes-
sages up to date requires the user to 
repeatedly focus on the IM client. At 
the other end of the spectrum are sta-
tus indicators that simply report raw 
sensor information that the audience 
is left to interpret. Typically, IM clients 
provide this service as an idle indica-
tor based on a lack of keystrokes or the 
invocation of a screen saver. The first 

option produces intrusive but appropri-
ate contextual information, while the 
second communicates accurate sensor 
cues that require interpretation. Our 
approach is to create a hybrid of these 
two extremes that supports rapid, easy 
updates and provides an interpretation 
of that information (see Figure 1).

Sensor technology
Our machine-assisted approach uses 
sensors to provide rich descriptions 
of context through mobile status mes-
sages. This problem looks a lot like 
related research in place, activity, and 
availability detection, but by combin-
ing all three tasks in one application, 
we can provide a rich set of data for 
human observers to interpret. For ex-
ample, knowing that users are in a 
classroom provides a great deal of in-
formation about their activities. Know-
ing that someone is teaching in a class-
room provides even more information 
about whether he or she can be inter-
rupted. To the best of our knowledge, 
no other researchers are investigating 
how to link these various aspects of 
context to help inform others. 
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Figure 1. Nomatic uses sensors to 
provide instant-messaging (IM) contacts 
with user-generated contextual cues. 
These semantic interpretations are 
easier to keep up to date than custom 
status lines and easier to interpret than 
raw sensor data.
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framed a portion of our problem as 
the position-to-place problem.5 Their 
work focused on translating the exact, 
unambiguous sensor data from GPS 
streams (or Wi-Fi-based localization) 
into a more accurate description. This 
research brought several relevant chal-
lenges to light, particularly the many-
to-many mapping of positions to places 
that make it difficult to determine cor-
rect place names. We address these con-
cerns by attempting to determine an ap-
propriate place name based on sensor 
data rather the “correct” place name. 
We validate our recommendations with 
the users’ selections. 

Our work is also closely related to 
activity recognition, in which many 
researchers are attempting to develop 
techniques to label a user’s current ac-
tivity from sensor streams. Much of this 
work attempts to characterize a user’s 
sensor stream as being generated from 
1 of N exclusive activities to support un-
derlying reasoning algorithms.6 We’re 
unable to precategorize which activities 
users will be engaged in beforehand, so 
we take a different approach; we simply 
attempt to suggest the same activity to 
a user when they’re in the same situa-
tion (as measured by the available sen-
sors). This gives users control over how 
they wish to describe their activity, but 

limits the types of machine-learning ap-
proaches that are available to us.

Another closely related line of re-
search is in detecting a user’s availabil-
ity from sensors.7,8 Our desired applica-
tion domain requires a more nuanced 
approach that gives users more flex-
ibility than a numeric scale between 
interruptible and uninterruptible. For 
example, an on-call doctor in a res-
taurant might be interruptible for an 
emergency but not interruptible for a 
billing question. When the domain of 
interest moves away from the work en-
vironment, availability is much harder 
to define. Our approach is to push that 
decision into the social sphere. We at-
tempt to learn a semantic description of 
the current sensor stream so that people 
can make a decision about whether it’s 
appropriate to initiate a communica-
tion—that is, if callers knew that their 
callees were in a restaurant, they could 
self-censor themselves appropriately.

Obviously, we aren’t the only ones 
working with context-enhanced IM 
systems. Other researchers are look-
ing at how people respond to context-
enhanced IM with regard to privacy 
(IMBuddy9). We’re less concerned with 
privacy because we don’t automatically 
broadcast sensor readings; we only 
broadcast status information that is 

predicted from sensor readings after the 
user has accepted them. Furthermore, 
our status information mimics the same 
language that the user used in a similar 
situation in the past, so users maintain 
control over their digital presentation. 
For example, if a user is in a coffee shop 
working and reports being “at work,” 
we repeat that behavior even though an 
external location ontology would be un-
likely to label Starbucks as “work.”

The Awarenex system uses sensor 
modules to help support fluid conver-
sation openings and closings,10 which 
is similar to James Fogarty’s work on 
interruption management.11 We differ-
entiate ourselves from these research-
ers by focusing on accurately predicting 
user-generated labels from the sensors 
built into current hardware. These la-
bels might serve similar functions in 
conversations, but their function is less 
of a focus in our research.

Prototype Design
An effective user-friendly method of 
entering status requires that it be fast 
and easy for users to enter their status. 
We prototyped such an interface us-
ing a combination of machine-learning 
techniques and user interface design. 
The program flow works as follows 
(see Figure 1): 
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Figure 2. Nomatic in use. (a) A screenshot of a prototype machine-assisted status change interface; (b) percentage of time users 
rated proactive interruptions as helpful in response to various system events.



OctObEr–DEcEmbEr 2009 PERVASIVE computing 5

•	 Steady state. While the user is work-
ing, our stand-alone program moni-
tors the sensors on the computer and 
displays the current status in a small 
window.

•	Change status. When the user presses 
a button to change his or her status, 
the interface reads the sensors on the 
computer and uses a machine-learn-
ing algorithm to make predictions for 
an appropriate status.

•	Validate predictions. The interface 
displays the predictions in a selection 
box (see Figure 2a). Based on earlier 
results that indicated that 71 percent 
of all custom status messages in mo-
bile IM are used to describe, place, 
activity, or availability,2 we offer 
the user a template to enter place, 
activity, or a free-form label called 
“other”. In the best case, the algo-
rithm is correct, and users only have 
to accept the guesses by clicking on 
the “Accept Change” button. Other-
wise, they can pick from the ranked 
list of guesses or, ultimately, type in 
a new status setting.

•	Accept prediction. When the user 
accepts the new status, the interface 
again sweeps the sensors on the com-
puter, pairs the sensor readings with 
the current status, and updates a local 
database that the machine-learning 
algorithm uses for future training.

Each of these steps provides ample op-

portunity for new lines of research, in-
cluding understanding how to initiate a 
prompt when sensors change, choosing 
which algorithms are the best predic-
tors, and experimenting with alterna-
tive user-interface designs.

evaluation Methodology
To evaluate this interface’s machine-
learning aspect, we asked 14 mobile 
laptop IM users to try the status in-
terface for three months. We then fol-
lowed up during and after the study 
with short interviews to get feedback. 
We collected 7,154 status lines paired 
with sensor data that yielded an average 
of 5.7 status changes a day per person. 
From this information, we evaluated 
several classification strategies (see Ta-
ble 1). We used two baseline classifiers: 
a static majority guess and a decision 
stump. Additionally, we tested three 
low-complexity algorithms: a K-near-
est-neighbors algorithm (K = 3), a naive 
Bayes classifier, and a decision tree clas-
sifier. Finally, we tested two moderately 
complex algorithms: a boosted naive 
Bayes classifier and a support-vector 
machine (SVM). For each algorithm, 
we ran five runs of 10-fold cross-vali-
dation testing and training, using only 
a within-subjects prediction strategy.

For each of these machine-learning 
methods, we tested seven different pre-
diction tasks. The features consisted of 
available sensors, ŝ = { day of the week, 

time of day, local and remote IP ad-
dress, Wi-Fi access point (AP) MAC 
address and service set identifier (SSID), 
currently active process, the number of 
displays connected to the computer 
and their resolutions, whether the mo-
bile device was plugged in, 3D accel-
erometer readings, ambient light, com-
puter’s volume setting, and number of 
mouse clicks per second }. Depending 
on the task, we used place p, activity a, 
and other o as features or classification 
targets. From these features, we calcu-
lated P(p | ŝ), P(a | ŝ), P(a | p), P(a | p, ŝ), 
P(o | ŝ), P(o | p, a), and P(o | p, a, ŝ).

analysis
By analyzing the results on our data set, 
we see that users have strong patterns 
of repeated status setting behavior in 
mobile IM (see Table 1). Based on the 
results from the single most likely clas-
sifier for place, P(p| ŝ), we can see that 
49 percent of the time, users report be-
ing in their most frequent location, 32 
percent of the time, they’re doing their 
most frequent activity, and 71 percent 
of the time, they’re using a single unique 
other status. Although these numbers 
are high from a temporal perspective, 
they mask various ways that people 
describe their places; in this case, the 
average number of unique places each 
user reported was 16. The most com-
mon places were custom variations on 
“at home” and “at work” but included 

TABLE 1 
The probability of various machine-learning algorithms correctly predicting  

place p, activity a, and other o status based on combinations of status and sensor (ŝ) readings.*

Algorithm P(p | ŝ) (%) P(a | ŝ) (%) P(a | p) (%) P(a | p, ŝ) (%) P(o | ŝ) (%) P(o | p, a) (%) P(o | p, a, ŝ) (%)

most likely 49 32 32 32 71 71 71

Decision stump 64 38 35 38 74 73 75

K nearest  
neighbors

75 50 43 53 74 77 77

Naive bayes 85 72 44 73 78 79 82

Decision tree 85 63 46 64 81 81 84

boosted stumps 91 76 44 80 85 80 91

Support-vector 
machine

94 93 45 94 96 81 97

* Bold numbers indicate best-performing combinations in each column that are statistically indistinguishable (p < 0.05).
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descriptions as varied as “at the beach” 
and “in my car.” The most common 
choice for activity status was to leave it 
blank, but that was closely followed by 
variations on activities such as “writ-
ing,” “sleeping,” and “working” and 
included “doing dishes” and “eating a 
chocolate muffin.” Other o status was 
most often blank and after that was 
hard to categorize, with examples such 
as “George Lopez!!” “Don’t bother 
me,” “sick,” and “Life’s good.”

Across the board, SVMs offered the 
best overall classification accuracy: they 
predicted the same place name that the 
user picked in 94 percent of the cases 
based on the sensors available, P(p | ŝ). 
We found similar results when predict-
ing a user’s activity, P(a | ŝ). The large 
gains made by the decision-stump al-
gorithm over the most-likely algorithm 
in predicting place, P(p | ŝ), confirms 
that a few sensors contain a lot of infor-
mation about place (such as Wi-Fi AP), 
but algorithms that leverage a variety of 
nonlocation-specific sensors do the best 
job of picking a nuanced place name. 
If we postulated knowing how people 
described their places, SVMs had a 45 
percent chance of correctly guessing the 
associated activity, P(a | p), which is a 
13 percent improvement over just pick-
ing the most-likely activity as a default. 
Adding the user’s choice of place names 
on top of the sensors available P(a | ŝ) 
→ P(a | p, ŝ) had negligible effect on im-
proving activity prediction (93 percent 
→ 94 percent). Finally, in predicting the 
other o status field, having knowledge 
of place and activity allowed SVMs to 
achieve 81 percent accuracy, P(o | p, a), 
but the sensor information by itself was 
sufficient to improve that to 96 percent 
accuracy. As was the case with predict-
ing activity, the additional interpreta-
tion by the user of the current place 
and activity P(o | ŝ) → P(o | p, a, ŝ) had 
a negligible benefit (96 percent → 97 
percent). 

Because keeping status accurate is 
also a matter of keeping it up to date, 
we investigated strategies for interrupt-
ing users at moments when it appeared 

that their status might be changing. 
Our goal was to identify the most help-
ful times to interrupt a user. We pro-
grammed Nomatic to observe the sen-
sor stream and look for various changes 
and, when they occur, to pop up the 
status change interface. After asking 
users to set their status, we also asked 
them to rate how helpful the reminder 
was. Figure 2b shows the interface, trig-
gers, and results of the strategies.

From these data, we can see that users 
generally find it helpful to be prompted 
to change their status simply based on 
elapsed time, whether that occurs after 
start-up or after the user has been using 
the computer for a while. One effect that 
generated this result is that when a user 
takes a laptop out of standby, our inter-
face is triggered. Intuitively, this seems 
to be a good time to get input from the 
user, and our data confirms this.

In contrast, interrupting the user 
during network change events isn’t as 
clearly helpful. Although this seems 
to be a good indicator of a change in 
context related to mobility, our users 
experienced many situations in which 
their Wi-Fi connection rapidly switched 
between several competing APs while 
they weren’t changing status. Similarly, 
intermittent Internet network problems 
made users’ local and remote IP address 
change without a corresponding change 
in location, resulting in high annoyance 
scores for those triggers.

Perception
Using a status line to communicate as-
pects of your context isn’t helpful unless 
the ecosystem also provides for percep-
tion of status by others, so we enabled 
Nomatic to interface with several third-
party status broadcast services. Users 
can optionally choose to have their sta-
tus reported to local IM clients (such as 
pidgin, iChat, and Adium) or popular 
microblogging services (such as Twitter 
and Facebook). Each of these services 
has mechanisms for broadcasting sta-
tus to a social network of various types 
so that status can be used to negotiate 
appropriate responses to context.

Thinking about perception, we de-
cided that our tool wouldn’t automati-
cally change status for a user. Because 
status communicates potentially sensi-
tive information, we made this design 
decision because it’s important for a 
user to trust our tool not to broadcast an 
inappropriate status. Nomatic requires 
that the user stay in the loop and click 
at least two buttons to initiate and then 
accept a status change. This exposes the 
relationship between accuracy and user 
attention that Nomatic is trying to min-
imize, but we hypothesize that remote 
viewers will find context status more 
useful if they can be confident that the 
user confirmed it. If contacts begin to 
doubt that a status is accurate, they’re 
likely to ignore it, rendering it useless.

Another way of providing percep-
tion of status is through communal 
awareness displays. We designed such 
a display called Nomatic*Viz,12 which 
visualizes the information that mem-
bers of a small community can pro-
vide through our status interface. Be-
cause our software uses hardware that 
comes with existing computing plat-
forms, rather than custom infrastruc-
tures, we were forced to address new 
ways of representing location in seman-
tically meaningful ways when our users 
move outside of research environments. 
Instead of using geographic maps, 
Nomatic*Viz depicts historical and ag-
gregate traces of participants’ where-
abouts in an abstract and ambiguous 
manner to convey the more useful con-
text information that status provides, 
while attempting to stay away from the 
connotations of “tracking” or “moni-
toring” that raise privacy concerns. 

Figure 3 shows a snapshot of 
Nomatic*Viz with 30 days’ worth of 
data. In this visualization, the layout is 
dynamically determined by users’ col-
lective interactions with the Wi-Fi in-
frastructure. It depicts historical traces 
of people’s whereabouts, but instead of 
using explicit icons for people, it uses 
different colors to distinguish between 
individuals. Therefore, participants 
and the people who engage with them 
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and the display gradually learn how 
to interpret the information. Casual 
observers have limited insight into the 
details of a particular person’s context.

Preliminary feedback of this display, 
which has been operating in our build-
ing’s elevator lobby for more than a 
month, has been mixed. System users 
and viewers have revealed both an in-
tuitive understanding of the abstract 
representations and confusion. On one 
hand, users’ ability to interpret the visu-
alization is correlated with their engage-
ment with the community being visual-
ized, which is a success for our design 
goals. Although viewers can’t interpret 
all the traces, they can gain general im-
pressions of the community’s overall 
activities and easily recognize and in-
terpret some of the participants’ data. 

On the other hand, the deployment’s 
physical setting limits its effectiveness. 
Somewhat counter-intuitively, the eleva-
tor lobby is too transitional a space and 
wait times are too short for people to be 
able to develop a familiarity with what’s 
going on in the visualization.

Motivation
Maintaining and monitoring status re-
quires user effort. The ability to sim-
ply log status motivates some people 
to keep their status accurate—such 
recordkeeping is useful for managing 
billing records and for encouraging 
self-reflection. Additional motivating 
applications help further increase the 
benefits without additional effort, and 
subsequently improve the ecosystem for 
passive content creation. 

iM interruption  
and embarrassment
Simply adding the ability for others 
to see your status creates awareness, a 
combination of provision and percep-
tion that researchers have thoroughly 
documented as having intrinsic value 
to support and improve distributed 
group work.13,14 Studies have indicated 
that 13 percent of all pre-mobile IM 
dialog was simply related to negotiating 
availability.15 As individuals are increas-
ingly always online, IM has moved onto 
mobile platforms, and interruptions ap-
pear to be getting worse. More recent 
studies of mobile IM users have reported 
that 43 percent of them actively use strat-
egies to manage interruptions and that 
as many as 7 percent have stopped using 
IM at one point or another due to the 
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distractions that it causes. Eighty percent 
of undergraduate mobile IM users report 
receiving embarrassing IMs because of 
their laptop screens’ semipublic visibil-
ity.2 We hypothesize that if machine-as-
sisted status messages effectively mitigate 
interruptions and alert users about the 
social context of a contact before they 
initiate, then it’s a significant motivation 
for keeping status up to date.

CatDL
We can also incorporate status infor-
mation into a context-aware to-do list 
(CATDL). By reordering a long list of 

tasks to focus attention on those that are 
currently relevant via a process that the 
user is already engaged in (status setting), 
we make context maintenance even 
more valuable. This approach enables a 
grocery list to appear on a mobile device 
upon entering a grocery store and a list 
of work tasks to naturally shift to a list 
of home tasks at the end of a work day.

We’ve implemented such a system as 
a locally hosted Web application called 
Nomatic*CATDL, which combines the 
status from Nomatic with an online to-
do list manager called Remember the 
Milk (www.rememberthemilk.com). 

When users want to see their current 
to-do list, they open the Web applica-
tion, which establishes a local connec-
tion to the Nomatic status setting tool 
and a remote connection to Remember 
the Milk. Nomatic contextually sorts 
the task list in the browser and presents 
it as a lightweight user interface suitable 
for a mobile phone. 

geographic overlays
Although the Nomatic*Viz display is 
highly abstract, there are also times 
when it’s appropriate to more explicitly 
map a context’s geographic location. In 
public or professional spaces, people of-
ten explicitly reveal or are required to 
reveal their current task. In such situa-
tions, it might be effective to explicitly 
represent status as a function of position. 
We’re exploring this idea through the de-
sign and study of a touchscreen directory 
kiosk for a large academic building. Ex-
isting kiosks help people find location 
according to facility managers’ descrip-
tions (such as building names and room 
numbers) but don’t reveal colloquial 
place names, such as a familiar class 
names (for example, Physics for Poets).

We’ve prototyped a display that over-
lays a traditional building map with his-
torical and real-time status information 
(see Figure 4). In this design, users can 
select a temporal range of data that they 
want to visualize at the top. This selec-
tion populates three drop-down lists 
on the lower left with data that other 
users have previously entered through 
the Nomatic tool. This building has 
been calibrated to support localization 
by Wi-Fi fingerprinting, so status can 
be associated with a particular geo-
graphic location. To support anonym-
ity, Nomatic only displays the status 
entries duplicated by more than one per-
son. The display’s user can then select a 
place, activity, or other status from the 
drop-down list; it highlights locations at 
which that status label has already been 
used with colored circles on the map. 
We’re in the process of studying how the 
kiosk’s enhanced design affects user in-
teraction with the directory display. 
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As we continue to explore 
possibilities and identify 
how to innovate existing 
technologies to best sup-

port users’ needs, we see many oppor-
tunities for future research. Interesting 
work remains to be done in developing 
a more sophisticated understanding 
of when users would like to be inter-
rupted to change their status. There 
are also opportunities for developing 
mass-collaboration approaches for 
sharing sensor and status information 
across users. Finally, we could identify 
which sensors are the most valuable 
for setting status as a way of advising 
future hardware construction. This in-
cludes creating abstract virtual sensors 
based on users’ calendars, their con-
tacts statuses, or any number of digi-
tal probes that might influence their 
mood.
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Figure 4. A context-enhanced directory 
for finding events in real time. An 
overlay displays a user-selected temporal 
range of data.


