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ABSTRACT: In this article we discuss an assisted cognition information
technology system that can learn personal maps customized for each
user and infer his daily activities and movements from raw GPS data.
The system uses discriminative and generative models for different parts
of this task. A discriminative relational Markov network is used to extract
significant places and label them; a generative dynamic Bayesian network
is used to learn transportation routines, and infer goals and potential user
errors at real time. We focus on the basic structures of the models and
briefly discuss the inference and learning techniques. Experiments show
that our system is able to accurately extract and label places, predict
the goals of a person, and recognize situations in which the user makes
mistakes, such as taking a wrong bus.
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INTRODUCTION

A typical map consists of significant places and road networks within a
geographic region. In this article, we present the concept of a personal map,
which is customized based on an individual’s behavior. A personal map in-
cludes personally significant places, such as home, a workplace, shopping
centers, and meeting places and personally significant routes (i.e., the paths
and transportation modes, such as foot, car, or bus, that the person usually
uses to travel from place to place). In contrast with general maps, a personal
map is customized and primarily useful for a given person. Because of the
customization, it is well suited for recognizing an individual’s behavior and of-
fering detailed personalized help. For example, in this article we use a personal
map to:
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• Discriminate a user’s activities (Is she dining at a restaurant or visiting a
friend?);

• Predict a user’s future movements and transportation modes, both in the
short term (Will she turn left at the next street corner? Will she get off
the bus at the next bus stop?) and in terms of distant goals (Is she going
to her workplace?);

• Infer when a user has broken his ordinary routine in a way that may
indicate that he has made an error, such as failing to get off his bus at his
usual stop on the way home.

We describe a system that builds personal maps automatically from raw loca-
tion data collected by wearable Global Positioning System (GPS) units. Many
potential applications can be built upon the system. A motivating application
for this work is the development of personal guidance systems that helps cog-
nitively impaired individuals move safely and independently throughout their
community (Patterson et al. 2004). Other potential applications include cus-
tomized “just in time” information services (for example, providing the user
with current bus schedule information when she is likely to need it or real
time traffic conditions on her future trajectories), intelligent user interface (in-
structing a cell phone not to ring when in a restaurant or at a meeting), and so
on (Golledge 2003).

Our work spans two of the four areas that have been highlighted in the
Converging Technologies conferences, information technology and cognitive
science (Roco and Bainbridge, 2002). Because cognitive disabilities are usually
biological in origin, the envisioned application of the work touches upon a third
area, biotechnology, as well.

This chapter is focused on the fundamental techniques of learning and in-
ference. We develop probabilistic models that bridge low-level sensor mea-
surements (i.e., GPS data) with high-level information in the personal maps.
Given raw GPS data from a user, our system first finds a user’s set of sig-
nificant places, then a Relational Markov Network (RMN) is constructed to
recognize the activities in those places (e.g., working, visiting, and dining out);
as discriminative models, RMNs often outperform their corresponding gen-
erative models (e.g., hidden Markov models) for classification tasks (Taskar
et al. 2002). The system then uses a dynamic Bayesian network (DBN) model
(Murphy 2002) for learning and inferring transportation routines between the
significant places; such a generative model is well suited for online tracking
and real-time user error detection.

RELATED WORK

Over the last years, estimating a person’s activities has gained increased
interest in the artificial intelligence (AI), robotics, and ubiquitous comput-
ing communities. One approach learns significant locations from logs of GPS
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measurements by determining the time a person spends at a certain location
(Ashbrook and Starner 2003; Hariharan and Toyama 2004). For these loca-
tions, researchers use frequency counting to estimate the transition parameters
of Markov models. Their approach then predicts the next goal based on the
current and the previous goals. Our system goes beyond their work in many
aspects. First, our system not only extracts places, but also recognizes activities
associated with those places. Second, their models are not able to refine the
goal estimates using GPS information observed when moving from one signif-
icant location to another. Furthermore, such a coarse representation does not
allow the detection of potential user errors. In contrast, our hierarchical gen-
erative model is able to learn more specific motion patterns of transportation
routines, which also enables us to detect user errors.

In the machine learning community, a variety of relational probabilistic mod-
els were introduced to overcome limitations of propositional probabilistic mod-
els. Relational models combine first-order logical languages with probabilistic
graphical models. Intuitively, a relational probabilistic model is a template for
propositional models such as Bayesian networks or Markov random fields
(similar to how first-order logic formulas can be instantiated to propositional
logic). Templates are defined over object classes through logical languages
such as Horn clauses, frame systems, Structural Query Language (SQL), and
full first-order logic. Given data, these templates are then instantiated to gen-
erate propositional models (typically Bayesian networks or Markov random
fields), on which inference and learning is performed. Relational probabilistic
models use high-level languages for describing systems involving complex
relations and uncertainties. Because the structures and parameters are defined
at the level of classes, they are shared by the instantiated networks. Parameter
sharing is particularly essential for learning from sparse training data and for
knowledge transfer between different people. As a popular relational proba-
bilistic model, RMNs define the templates using SQL, a widely used query
language for database systems, and the templates are instantiated into (condi-
tional) Markov networks, which are undirected models that do not suffer the
cyclicity problem and are thereby more flexible and convenient. Since their
introduction, RMNs have been used successfully in a number of domains, in-
cluding web page classification (Taskar et al. 2002), link prediction (Taskar
et al. 2003), and information extraction (Bunescu and Mooney 2004).

In the context of probabilistic plan recognition, Bui and colleagues (2002)
introduced the abstract hidden Markov model, which uses hierarchical repre-
sentations to efficiently infer a person’s goal in an indoor environment from
camera information. Bui (2003) extended this model to include memory nodes,
which enables the transfer of context information over multiple time steps. Bui
and colleagues introduced efficient inference algorithms for their models using
Rao-Blackwellised particle filters (RBPF). Because our model has a similar
structure to theirs, we apply the inference mechanisms developed by Bui. Our
work goes beyond the work of Bui’s group in that we show how to learn the
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parameters of the hierarchical activity model, and their domains, from data.
Furthermore, our low-level estimation problem is more challenging than their
indoor tracking problem.

The task of detecting abnormal events in time series data (called novelty
detection) has been studied extensively in the data-mining community (Gu-
ralnik and Srivastava 1999), but remains an open and challenging research
problem. We present the results on abnormality and error detection in location
and transportation prediction using a simple and effective approach based on
comparing the likelihood of a learned hierarchical model against that of a prior
model.

EXTRACTING AND LABELING PLACES

In this section, we briefly discuss place extraction and activity labeling. Full
technical details of the activity labeling are provided elsewhere (Liao et al.
2005).

Place Extraction

Similar to the work of Ashbrook and Starner (2003) and of Hariharan and
Toyama (2004), our current system considers significant places to be those
locations where a person typically spends extended periods of time. From the
GPS data, it first looks for locations where the person stays for a given amount
of time (e.g., 10 min), and then these locations are clustered to merge spatially
similar points. An extension of the approach that takes into account more
complex features is discussed later.

Activity Labeling

We build our activity model based on the RMN framework (Taskar et al.
2002). RMNs describe specific relations between objects using clique tem-
plates specified by SQL queries: each query C selects the relevant objects and
their attributes, and specifies a potential function, or clique potential, �C, on
the possible values of these attributes. Intuitively, the clique potentials measure
the “compatibility” between values of the attributes. Clique potentials are usu-
ally defined as a log-linear combinations of feature functions, that is, �C(vC) =
exp{wT

C · fC(vC)}, where vC are the attributes selected in the query, fC() is
a feature vector for C, and wT

C is the transpose of the corresponding weight
vector. For instance, a feature could be the number of different homes defined
using aggregations.

To perform inference, an RMN is unrolled into a Markov network, in which
the nodes correspond to the attributes of objects. The connections among the
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nodes are built by applying the SQL templates to the data; each template C
can result in several cliques, which share the same feature weights. Standard
inference algorithms, such as belief propagation and Markov Chain Monte
Carlo (MCMC), can be used to estimate the conditional distribution of hidden
variables given all the observations.

Relational Activity Model

Because behavior patterns can be highly variable, a reliable discrimination
between activities must take several sources of evidence into account. More
specifically, our model defines the following templates:

i. Temporal patterns: Different activities often have different temporal pat-
terns, such as their duration or the time of day. Such local patterns are
modeled by clique templates that connect each attribute with the activity
label.

ii. Geographic evidence: Information about the types of businesses close
to a location can be extremely useful to determine a user’s activ-
ity. Such information can be extracted from geographic databases like
http://www.microsoft.com/mappoint. Because location information in
such databases is not accurate enough, we consider such information by
checking whether, for example, a restaurant is within a certain range from
the location.

iii. Transition relations: First-order transitions between activities can also be
informative. For example, going from home to work is very common while
dining out twice in a row is rare.

iv. Spatial constraints: Activities at the same place are often similar. In other
words, the number of different types of activities in a place is often limited.

v. Global features: These are soft constraints on the activities of a person. The
number of different home locations is an example of the global constraints.
Such a constraint is modeled by a clique template that selects all places
labeled as home and returns how many of them are different.

Inference

In our application, the task of inference is to estimate the labels of activ-
ities in the unrolled Markov networks. FIGURE 1 offers an example with six
activities. Solid straight lines indicate the cliques generated by the templates
of temporal, geographic, and transition features; bold solid curves represent
spatial constraints (activity 1 and 4 are associated with the same place and so
are 2 and 5); dashed curves stand for global features, which are label-specific
cliques (activity 1 and 4 are both labeled as “AtHome” or “AtWork” at this
moment).
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FIGURE 1. An example of unrolled Markov network with six activities.

Inference in our relational activity models is complicated by the fact that the
structure of the unrolled Markov network can change during inference. This is
due to the fact that, in the templates of global features, the label of an object
determines to which cliques it belongs. We call such cliques label-specific
cliques. Because the label values are hidden during inference, such cliques
potentially involve all the labels, which makes exact inference intractable.

We perform approximate inference using MCMC (Gilks et al. 1996). We
first implemented MCMC using basic Gibbs sampling. Unfortunately, this
technique performs poorly in our model because of the strong dependencies
among labels. To make MCMC mix faster, we developed a mixture of two tran-
sition kernels: the first is a block Gibbs sampler and the second is a Metropolis
sampler (see Liao et al. 2005 for details). The numbers of different homes
and workplaces are stored in the chains as global variables. This allows us
to compute the global features locally in both kernels. In order to determine
which kernel to use at each step, we sample a random number u between 0
and 1 uniformly, and compare u with the given threshold � (� = 0.5 in our
experiments).

Learning

The parameters to be learned are the weights w of the features that define
the clique potentials. To avoid overfitting, we perform maximum a posterior
(MAP) parameter estimation and impose an independent Gaussian prior with
constant variance for each component of w. Because the objective function for
MAP estimation is convex, the global optimum can be found using standard
numerical optimization algorithms (Taskar et al. 2002). We apply the quasi-
Newton methods to find the optimal weights because they have been found to
be very efficient for conditional random fields (Sha and Pereira 2003). Each
iteration of this technique requires the value and gradient of the objective
function computed at the weights returned in the previous iteration. Elsewhere
(Liao et al. 2005) we presented an algorithm that simultaneously estimates at
each iteration the value and its gradient using MCMC.
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FIGURE 2. Hierarchical activity model representing a person’s outdoor movements.

Although parameter learning in RMNs requires manually labeled training
data, parameter sharing makes it easy to transfer knowledge. For example, in
our system, we can learn a generic model from people who have manually
labeled data, and then apply the model to people who have no labeled data.
Generic models in our system can perform reasonably well, as we will show
in the experiments.

LEARNING AND INFERRING TRANSPORTATION ROUTINES

We estimate a person’s activities using the three-level DBN model shown in
FIGURE 2 (Liao et al. 2004). This is an hierarchical activity model representing
a person’s outdoor movements during everyday activities. The upper level esti-
mates the user mode, the middle layer represents goals and trip segments, and
the lowest layer is the flat model, estimating the person’s location, velocity, and
transportation mode. The individual nodes in such a temporal graphical model
represent different parts of the state space, and the arcs indicate dependencies
between the nodes (Murphy 2002). Temporal dependencies are represented
by arcs connecting the two time slices k-1 and k. The highest level of the
model indicates the user mode, which could be typical behavior, user error, or
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deliberate novel behavior. The middle level represents the person’s goal (i.e.,
next significant place) and trip segment (defined below). The lowest level is
the flat model, which estimates the person’s transportation mode, location and
motion velocity from the GPS sensor measurements. In this section, we explain
the model from bottom up.

Locations and Transportation Modes

We denote by � k = (lk , vk, ck) the location and motion velocity of the
person, and the location of the person’s car (subscripts k indicate discrete
time). We include the car location because it strongly affects whether the
person can switch to the car mode. In our DBN model, locations are estimated
on a graph structure representing a street map. GPS sensor measurements, zk ,
are generated by the person carrying a GPS sensor. Because measurements are
given in continuous xy-coordinates, they have to be “snapped” to an edge in
the graph structure. The edge to which a specific measurement is “snapped” is
estimated by the association variable �k . The location of the person at time k
depends on his previous location, lk−1, the motion velocity, vk , and the vertex
transition, � k . Vertex transitions � model the decision a person makes when
moving over a vertex in the graph, for example, to turn right when crossing a
street intersection.

The mode of transportation can take on four different values mk ε {BUS,
FOOT, CAR, BUILDING}. Similar to (Patterson et al. 2003), these modes in-
fluence the motion velocity, which is picked from a Gaussian mixture model.
For example, the walking mode draws velocities only from the Gaussian rep-
resenting slow motion. BUILDING is a special mode that occurs only when the
GPS signal is lost for significantly long time. Finally, the location of the car
only changes when the person is in the CAR mode, in which the car location
is set to the person’s location.

An efficient algorithm based on RBPFs has been developed to perform
online inference for the flat model (Doucet et al. 2000). In a nutshell, the
RBPF samples transportation mode mk

(i), transportation mode switch f m
k

(i),
data association �k

(i), edge transition � k
(i), and velocity vk

(i), then it updates the
Gaussian distribution of location lk

(i) using a one-dimensional Kalman filter.
After all components of each particle are generated, the importance weights of
the particles are updated. This is done by computing the likelihood of the GPS
measurement zk , which is provided by the update innovations of the Kalman
filters.

We apply expectation maximization (EM) to learn the model parameters.
Before learning, the model has no preference for when a person switches
mode of transportation, or which edge a person transits to when crossing a
vertex on the graph. However, information about bus routes, and the fact that
the car is either parked or moves with the person, already provide important
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constraints on mode transitions. At each iteration of EM, the location, velocity,
and mode of transportation are estimated using the RBPF of the flat model. In
the E-step, transition counts of a forward and a backward filtering pass through
the data log are combined, based on which we update the model parameters
in the M-step. In our Rao-Blackwellised model, edge transitions are counted
whenever the mean of a Kalman filter transits the edge. The learned flat model
encodes information about typical motion patterns and significant locations
by edge and mode transition probabilities.

After we estimate the mode transition probabilities for each edge, we find
mode transfer locations, that is, usual bus stops and parking lots, by looking
for those locations at which the mode switching exceeds a certain threshold.

Goals and Trip Segments

A trip segment is defined by its start location, ts
k , end location, te

k , and the
mode of transportation, tm

k , the person uses during the segment. For example,
a trip segment models information such as: “She gets on the bus at location ts

k

and takes the bus up to location te
k , where she gets off the bus.” In addition to

transportation mode, a trip segment predicts the route on which the person gets
from ts

k to te
k . This route is not specified through a deterministic sequence

of edges on the graph but rather through transition probabilities on the graph.
These probabilities determine the prediction of the person’s motion direction
when crossing a vertex in the graph, as indicated by the arc from tk to � k .

A goal represents the current target location of the person. Goals include the
significant locations extracted using our discriminative model. The transfer
between trip segments and goals is handled by the boolean switching nodes
f t

k and f g
k , respectively.

To estimate a person’s goal and trip segment, we apply the inference algo-
rithm used for the abstract hidden Markov memory models (Bui 2003). More
specifically, we use an RBPF both at the low level and at the higher levels.
Each sample of the resulting particle filter contains the discrete and continu-
ous states described in the previous section, and a joint distribution over the
goals and trip segments. These additional distributions are updated using exact
inference.

Because we have learned the set of goals using the discriminative model
and the set of trip segments using the flat model, we only need to estimate the
transition matrices at all levels: between the goals, between the trip segments
given the goal, and between the adjacent streets given the trip segment.

Again, we use EM in the hierarchical model, which is similar to that in the
flat model. During the E-steps, smoothing is performed by tracking the states
both forward and backward in time. The M-steps update the model parameters
using the frequency counts generated in the E-step. All transition parameters
are smoothed using Dirichlet priors.
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User Modes

To detect user errors or novel behavior, we add the variable uk to the highest
level, which indicates the user’s behavior mode ε {Normal,Novel,Erroneous}.
Different values of uk instantiate different parameters for the lower part of the
model. When user mode is typical behavior, the model is instantiated using
the parameters learned from training data. When a user’s behavior is Erro-
neous, the goal remains the same, but the trip segment is set to a distinguished
value “unknown” and as a consequence the parameters of the flat model (i.e.,
transportation mode transitions and edge transitions) are switched to their a
priori values: An “unknown” trip segment cannot provide any information for
the low-level parameters. When a user’s behavior is Novel, the goal is set to
“unknown,” the trip segment is set to “unknown,” and the parameters of the
flat model are again set to their a priori values.

To infer the distribution of uk , we run two trackers simultaneously, and at each
time their relative likelihood is used to update the distribution. The first tracker
uses the hierarchical model with learned parameters and second tracker uses
the flat model with a priori parameters. When a user is following her ordinary
routine, the first tracker has higher likelihoods, but when the user makes error
or does something novel, the second tracker becomes more likely. Unless
the true goal is observed, the system cannot distinguish errors from novel
behavior, so the precise ratio between the two is determined by hand selected
prior probabilities. In some situations, however, the system knows where the
user is going, for example if the user asks for directions to a destination, or
if a caregiver indicates the “correct” destination, and thus the goal is fixed,
treated as an observed, and therefore clamped. After we have clamped the
goal, the probability of novel behavior becomes zero and the second tracker
just determines the probabilities of an error.

EXPERIMENTS

To evaluate our system, we collected two sets of location data using wearable
GPS units. The first data set contains location traces from a single person over
a time period of 4 months. FIGURE 3 shows part of the locations contained in
the data set of a single person, collected over a period of 4 months, the x-axis is
8 miles long. It includes about 400 activities at 50 different places. The second
data set consists of 1 week of data from five different people. Each person
has 25–30 activities and 10–15 different significant places. We extracted from
the logs each instance of a subject spending more than 10 min at one place.
Each instance corresponds to an activity. We then clustered the nearby activity
locations into places.
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FIGURE 3. Some of the locations contained in the data set of a single person.

Evaluating the RMN Model

For training and evaluation, the subjects manually labeled the data with their
activities from the following set: {AtHome, AtWork, Shopping, DiningOut,
Visiting, Other}. Then, we constructed the unrolled Markov networks using
the templates described above, trained the models, and tested their accuracy.
Accuracy was determined by the activities for which the most likely labeling
was correct.

In practice, it is of great value to learn a generic activity model that can
be immediately applied to new users without additional training. In the first
experiment, we used the data set of multiple users and performed leave-one-
subject-out cross-validation: We trained using data from four subjects, and
tested on the remaining one. FIGURE 4 A shows error rates of cross-validation
of the generic models and customized models using different feature sets. The
average error rates are indicated by the white bars. By using all the features,
the generic model achieved an error rate of 20%. Note that the global features
and the spatial constraints are very useful. To gauge the impact of different
habits on the results, we also performed the same evaluation using the data
set of single subject. In this case, we used 1-month data for training and the
other 3-month data for test, and we repeated the validation process for each
month. The results are shown by the gray bars in FIGURE 4 A. In this case,
the model achieved an error rate of only 7%. This experiment shows that it is
possible to learn good activity models from groups of people. It also shows that
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FIGURE 4. Results showing improvement in the error rates.

if the model is learned from more “similar” people, then higher accuracy can
be achieved. This indicates that models can be improved by grouping people
based on their activity patterns.

When estimating the weights of RMNs, a prior is imposed in order to avoid
overfitting. Without additional information, a zero mean Gaussian is typically
used as the prior (Taskar et al. 2002). Here we show that performance can also
be improved by estimating the hyper-parameters for the means of the weights
using data collected from other people. Similar to the first experiment, we
want to learn a customized model for a person A, but this time we also have
labeled data from others. We could simply ignore the others’ data and use the
labeled data from A with a zero-mean prior. Or we can first learn the weights
from the other people and use that as the mean of the Gaussian prior for A.
We evaluate the performance of the two approaches for different amounts of
training data from person A. FIGURE 4 B shows results, zero-mean prior versus
learned model as prior mean (showing the error rates over the new places
only). We can see that using data from others to generate a prior boosts the
accuracy significantly, especially when only small amounts of training data
are available.

Using the Bayesian prior smoothly shifts from generic to customized models:
On one end, when no data from the given subject is available, the approach
returns the generic (prior) model; on the other end, as more labeled data become
available, the model adjusts more and more to the specific patterns of the user
and we get a customized model.

Evaluating the DBN Model

The learning of the generative model was done completely unsupervised
without any manual labeling. FIGURE 5 shows the learned trip segments and
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FIGURE 5. Learned model in the area around the workplace.

street transitions zoomed into the workplace, and the very likely transitions
(probability above 0.75). Dashed lines indicate car mode, solid lines indicate
taking a bus, and dashed-dotted lines indicate foot travel. In FIGURE 5 A, the
goal is the workplace, whereas in FIGURE 5 B the goal is home. The model
successfully discovered the most frequent trajectories for traveling from home
to the workplace and vice-versa, as well as other common trips, such as to the
homes of friends.

As we described, an important feature of our model is the capability to
capture user errors and novel behavior using a parallel tracking approach.
To demonstrate the performance of this technique, we did the following two
experiments.

In the first experiment, shown in parts (A) and (B) of FIGURE 6, a user took
the wrong bus home. For the first 700 s, the wrong bus route coincided with
the correct one and the system believed that the user was in {uk = Normal}
mode. But when the bus took a turn that the user had never taken to get home,
the probability of errors in the clamped model dramatically jumped (FIG. 6 A).
In contrast, the unclamped model cannot determine a user error because the
user, while on the wrong bus route, was on a bus route consistent with other
previous goals (FIG. 6 B). When the goal is unclamped, the prior ratio of typical
behavior, user error and novel behavior is 3:1:2. When goal is clamped, the
probabilities of novel behavior are always zero.

The second experiment was a walking experiment in which the user left his
office and proceeded to walk away from his normal parking spot. When the
destination was not specified, the tracker had a steady level of confidence in
the user’s path (FIG. 6 D), because there are lots of previously observed paths
from his office. But when the goal was specified, the system initially saw
behavior consistent with walking toward the parking spot, and then as the user
turned away at time 125, the tracker’s confidence in the user’s success dropped
(FIG. 6 C).
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FIGURE 6. The probabilities of user mode in two experiments.

CONCLUSIONS AND FUTURE WORK

In this chapter we have described a system that can build personal maps auto-
matically from GPS sensors. More specifically, the system is able to: recognize
significant locations of a user and activities associated with those places, in-
fer transportation modes and goals, and detect user errors or novel behavior.
The system uses an RMN for place classification and a hierarchical DBN for
online tracking and error detection. This technique has been used as the ba-
sis for both experimentation and for real context-aware applications including
an automated transportation routing system that ensures the efficiency, safety,
and independence of individuals with mild cognitive disabilities (see Patterson
et al. 2004).

In our future work we plan to improve the place extraction. The current
approach relies only on measuring the time periods a person stays at each place
and uses a fixed threshold to distinguish significant places from insignificant
ones. However, it is hard to find a fixed threshold that works for all significant
places. If we set the threshold too big (say 10 min, as in our experiments),
some places could be missed (e.g., places a user stops by to get coffee or pick
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up his kids); if we set the value too small (e.g., 1 min), some trivial places
(such as traffic lights) may be considered significant. Therefore, to extract
more places accurately, we will take into account more features besides stay
duration. For example, transportation mode is a very useful indicator: If a
user switches to foot at some place during a car trip, that place is likely to
be significant. Because transportation mode itself has to be inferred, we must
design a model that considers all these uncertainties comprehensively. In order
to do that, we plan to extend the existing relational probabilistic languages so
that we can model complex relations and still perform efficient inference and
learning.

The application of this work to personal guidance systems for persons with
cognitive disabilities is only one example of what can be called an “assisted
cognition system” (Kautz et al. 2003). Assisted cognition systems, in general,
combine artificial intelligence and ubiquitous sensing technology to create
systems that observe and understand human behavior, infer and predict a per-
son’s needs and difficulties, and provide proactive guidance, prompts, and
other forms of help. We believe that systems that provide such cognitively-
aware assistance will play a vital role in the future of healthcare, and enable
many individuals to lead active and productive lives (Turkle 2003; Wolbring
and Golledge 2003).
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